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This course is designed as a follow-on to GEOLOGY/GEOGRAPHY 4093/5093
and, as such, will assume a familiarity with remote sensing concepts. Refer to the
4093/5093 text, Remote Sensing Principles and Interpretation by F.F. Sabins, Jr., or
"Introduction to the Physics and Techniques of Remote Sensing™ by Charles Elachi for
background.

The text is: Remote Sensing Digital Image Analysis by John A. Richards with
supplemental reading to be assigned. The purpose of this course is to make the
student familiar with information extraction from digital images taken from aircraft and
spacecraft platforms. The technique is digital image processing, but beyond the
technique, the student should develop an understanding of what kind of information
can be extracted and, most importantly, what the limitations are.

The lectures will stress fundamentals, the basis for the image analysis software,
and the labs are centered on hands-on use of the computers in the Center of the Study
of Earth from Space (CSES). This year we are moving the class computing from
canned software packages to a more flexible system based on IDL, a high-level image
processing language. This will allow the more adventurous students to write their own
routines without having to be C Language buffs. There is no requirement in this course
to write software. We also have several commercial software packages available for
those interested.

The labs have been rewritten and may contain bugs. Bear with us as we work
them ottt IBM 8000 worketatione will be available on campus in CIRES room 236 and
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Trends 1n Quantifying non-pigment
leaf biochemistry

» Greater understanding of lab, field and remote
sensing level spectra in relation to
biochemical composition

* Increased use of full spectrum or specific
biochemical absorption features to
characterize vegetation

* Greater application of 1imaging spectroscopy
to understand ecosystem processes



Understanding vegetation spectra in
relation to biochemical composition

Water

Nitrogen (1n chlorophylls and proteins)
Lignin and Cellulose
Non-Photosynthetic Vegetation
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Spectroscopic Estimates of
Leat/Canopy Water

Leaf/Canopy Liquid Water Thickness
e Gao & Goetz, 1994

Canopy Equivalent Water Thickness
e Greenetal., 1991 & Roberts et al. 1997

Canopy Relative Water Content
 Serrano et al. 2000

Foliar Water Potential
e Stimson et al. 2005
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Nitrogen

* By dry weight, very low abundance 1n leaves, only
0.5 to 4%

« Present in important biochemical constituents of
plants

— Chlorophyll
— Protein

* Linked by field studies to rates of ecosystem
functioning (carbon fixation) and widely used 1n
ecosystem models



Nitrogen 1n Proteins

* Proteins composed of amino acids ranging
from a 100 to 100,000 1n number

Amino Acid #1 Amino Acid #2 A "Dipeptide”
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RuBi1sCO

* Ribulose-1,5-
bisphosphate
carboxylase/oxygenase,
catalyzes the first major
step of carbon fixation

e RuBisCO is the most
abundant protein in
leaves (maybe the most
abundant on Earth).



http://en.wikipedia.org/wiki/Image:Rubisco.png
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Prediction Results Using Calibration Data Set — Nitrogen

1
Reflectance spectra continuum removed

Normalized to area under band depth curve
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Nitrogen 1n
Chlorophyll
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Absorption Spectrum of
Chlorophyll a
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Second week
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Biochemical Components of Plants
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Biochemical Components of Plants
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Analysis of spectral shape (full spectrum and/or
absorption features) for vegetation
characterization

e Multiple Endmember Spectral Mixture Models:
— Roberts, et al. (1998) Remote Sens. Environ. 65:267-279

« Monte Carlo spectral unmixing model:

— Asner and Heidebrecht (2002) Int. J. Remote sensing 23:
3939-3958

e Tetracorder:

— Clark, et al. (2003) . J. Geophys. Research 108 (E12): 5-1
to 5-44



Understanding ecosystem processes by
quantifying canopy biochemistry

Wessman, et al. (1988) Nature 333:154-6.

Asner and Heidebrecht, (2003) IEEE Trans.
on Geoscience & Remote Sensing 41:1283-
1296.

Ollinger and Smith, (2005) Ecosystems 8:
760778

Asner et al. (2005), Remote Sensing of
Environment 96: 497 — 508



Non-Photosynthetic Vegetation and Shrubland Ecosystems

Asner and Heidebrecht, IEEE Trans. on Geoscience & Remote Sensing (2003), 41:1283-1296.
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Remaining Challenges/
Future Directions

Interaction of biochemicals
— Leaf water masking effect

— Nitrogen/lignin/cellulose all affect the 2.1 and 2.3 pm
features

Atmospheric correction
Quantifying other biochemicals (phosphorous)
Independent-site/Multi-site validation






Influence on multispectral approaches via
ratios and indices based on absorption
features

NDWI
CAI
NDNI
NLNI
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The first mention of the word protein was from a letter sent by Jons
Jakob Berzelius to Gerhardus Johannes Mulder on 10. July 1838
where he wrote:

— «Le nom proté€ine que je vous propose pour 1’oxyde organique de la

fibrine et de I’albumine, je voulais le dériver de mpwteiog, parce qu’il
parait €tre la substance prlmltlve ou principale de la nutrition animale.»

Translated as:

— "The name protein that I propose for the organic oxide of fibrin and
albumin, I wanted to derive from [the Greek word] mpwtelog, because it
appears to be the primitive or principal substance of animal nutrition."

Investigation of proteins and their properties had been going on since
about 1800 when scientists were finding the first signs of this, at the
time, unknown class of organic compounds.



http://en.wikipedia.org/wiki/J%C3%B6ns_Jakob_Berzelius
http://en.wikipedia.org/wiki/J%C3%B6ns_Jakob_Berzelius
http://en.wikipedia.org/wiki/J%C3%B6ns_Jakob_Berzelius
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http://en.wikipedia.org/wiki/Albumin
http://en.wikipedia.org/wiki/Greek_language
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Wavelengths of Nitrogen Stepwise Regression Fit

= 2.036 um
= 2.050 pm
= 2.078 um
= 2.152 um
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Serrano et al., REMOTE SENS. ENVIRON. 74:570-581 (2000
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