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INTRODUCTION

Levels of Spectral Information in Remote Sensing

Spectral mixture analysis: Determines the
abundance of materials (e.g. precision agriculture).

Characterization: Determines variability of
identified material (e.g. wet/dry sand, soil particle
size effects).

Hyperspectral Identification: Determines the unique identity of
(100’s of bands) th.e foregoing generlc categories (e.g. land-cover or
mineral mapping).

Discrimination: Determines generic categories of
the foregoing classes.

VILN s
{OES

Classification: Separates materials into spectrally
similar groups (e.g., urban data classification).

Detection: Determines the presence of materials,
objects, activities, or events.

Panchromatic
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Challenges in hyperspectral image processing

*  The special characteristics of hyperspectral data pose several processing problems:

1. The high-dimensional nature of hyperspectral data introduces important
limitations in supervised classifiers, such as the limited availability of
training samples or the inherently complex structure of the data.

2. There is a need to integrate the spatial and spectral information to take
advantage of the complementarities that both sources of information can
provide, in particular, for unsupervised data processing.

3. There is a need to develop parallel algorithm implementations, able to
speed up algorithm performance and to satisfy the extremely high
computational requirements of time-critical remote sensing applications.

* In this work, we have taken a necessary first step towards the understanding and
assimilation of the above aspects in the design of last-generation hyperspectral image
Dprocessing algorithms.
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Support Vector Machines (SVMs)

High-dimensional spaces are mostly ezzp?y, making density estimation difficult.

SVMs consider geometrical rather than statistical properties of the classes.

V' Kernel-trick allows one to work in the mapped kernel space.

v No need to know the mapping function: (®(x;), ®(x,)) = k (x;,%;)

w.x+b=+1/

<+ Optimal separating
hyperplane
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Polynomial kernel:
kpory (x,2) = ((x,2) + 6)°
SAM kernel:

ksam (X, 2) = exp (—ya(x, z)?)
a(x, ) = arccos (i)

Gaussian RBF kernel:

k:gauss (X: Z) — eXp (_7||X — Z||2)
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CLASSIFICATION USING KERNEL METHODS

Composite Kernels for Image Classification

*  Some Properties of Mercer’s kernels:
v Sum of valid kernels s a valid kernel.
v" Scaling a valid kernel by a positive factor is a valid kernel
v Tensor product of valid kernels /s a valid kernel.

*  From Functional Analysis, the direct sum of Hilbert spaces allows elegant integration of
different information sources in any &erne/ machine.

*  To decompose the spectral and contextual/ spatial information and merge it in the composite kernel.

*  New family of composite kernels developed, accounting for spatial, spectral and cross-
information simultaneously.

Spectral space

y 7 —p

Hypercube »
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Based on the joint use of labeled and unlabeled patterns in the framework of a
transductive iterative learning process.

Transductive Support Vector Machines (I'SVMs)

Standard Inductive Approch: The learning of
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Transductive Support Vector Machines (IT'SVMs)

* Important issues:

v'  Selection of transductive samples. Goals:
1) To select samples with an expected accurate labeling;
11) To choose informative samples.

Iterative selection procedure designed to choose a balanced number of /abeled
and tfransductive samples (unlabeled patterns closest to margin bounds).

v Threshold criterion. To select transductive samples in a small solution space, a
threshold criterion is used to consider the density of the selected area. A pairwise
labeling strategy is used to alleviate the problem of unbalanced classes.

v Regularization parameter. Used to control the number of misclassified
samples that belong to the original training set and the unlabeled set. The larger
the regularization parameter, the higher the influence of the associated samples

on the selection of the discriminant hyperplane.

v Multi-class extension. As in standard SVMs, the transductive process is based
: p
on a structured architecture made up of binary classifiers. It must be possible to
give a classification label to all unlabeled samples (o7e versus the resi).
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Why integrated spatial/spectral approaches?

* Much effort has been given to processing hyperspectral image data in spectral terms.

* Data analysis is carried out without incorporating information about spatial context.

Pixel spatial coor-
dinates randomly
shuffled

[ Spectral processing H Same OlltJtPUt H Spectral processing ]
results

* There is a need to incorporate the image representation of the data in the analysis.
* Most available approaches consider spatial and spectral information separately.

* Several approaches considered in this work to achieve the desired integration.
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INTEGRATION OF SPATIAL AND SPECTRAL INFORMATION

Mathematical Morphology

* Grayscale morphology relies on a partial ordering relation between image pixels.

(f ® K)(x) = Max {f (x —5) + k(s)} Original image
seK |
|
5 | 3x3 structuring element defines
N W neighborhood around pixel P
Dilations ~_.--~~._____- - -5 Max N
”a’ ST k(S)
JPtanl il - | fxey Max
/ -’ e B f(x)
7 min f(x+1)
/, ’¢” \\ /,
4 ”‘ Y /
// e . ‘\ ,
/) Erosions ! I
7 7 \\ —’/
’ 4
(f ® K)(x) = Min {f (x +5) - k(s)} -~ .
seK Dilation Erosion

* Morphological operations for hyperspectral imagery require ordering of image pixcels.

* Two strategies explored in this work: vector-based ordering and PCA-based ordering.
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INTEGRATION OF SPATIAL AND SPECTRAL INFORMATION

Vector-based ordering

* Based on a spectral distance function (SAD, SID) and a cumulative distance measure.

D_=SAD(b,a)+ D, =SAD(a,b)+ D _=SAD(a,d+ D ~SAD(a,d)+
SAD(c,a)+ SAD(c,b)+ SAD(b,0)+ SAD(b,d)+
SAD(d,a) SAD(d,b) SAD(d,0) SAD(c,d)

The greatest element 1s the most spectrally distinct (pure) in the structuring element.

The /least element 1s the most spectrally similar (mixed) in the structuring element.

Extended dilation has the effect of expanding pure spectral areas in the image.

Exctended erosion reduces pure spectral areas and expands mixed areas.

Particularly suited for spatial/spectral endmember extraction.
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INTEGRATION OF SPATIAL AND SPECTRAL INFORMATION

Automated Morphological Endmember Extraction.-

e Integration of spectral and spatial information (computation intensive)

*  Selection of the most spectrally pure and the most spectrally mixed signatures.

Pre-processing Reduced
: B e

PCA, MNF, ICA HASE
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Classification Using Morphological Profiles.-

Uses opening and closing operations to create a feature vector for classification:
OP;(z,y) = v (w,y), Vi € [0.k]  CPi(z,y) = ¢ (x,y), Vi € [0, k]
MP(:’CU y) — {OP]C(:’CU y)j b jf(xj y)j b UOPk(:I;U y)}

Extended Morphological Profile.-

o

)

PC1

Feature Extraction Morphological
PCA PCn Profile

Extended
MP

. : : \ J
Provides information about the size of the structures (MP),

the local constrast (MP) and the spectrum (PCA).

Mpext(xa y) - {MPPC'l (3:1 y)a RN ]\4PPC;C (3:3 y)}
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INTEGRATION OF SPATIAL AND SPECTRAL INFORMATION

Spatial/spectral classification using MRFs

. Minimization of a cost function:

U(9(X, Y), C(X, ¥)) = aU geerar (9(X, ¥), C(X, V) + U gpatiar (90X, ¥), C(X, ¥))

where  Ugaia @6 ).COGY) = D AIC(:Y).CG0 1)

(i, ))eG(x,y)
m 1 _
afld Uspectral (g(X, y)'C(X’ y)) = ?In | 2z Z:k | +E(g(xi y) — My )T Z:kl(g(xi y) - /uk)
SPECTRAL DOMAIN SPATIAL DOMAIN

NEURO MRF
FUZZY ‘> INVNR'QI R

APPROACH

* Integration of the pattern recognition capability of a neuro-fuzzy classifier and the
spatial/spectral nature of the probabilistic MIL.-based MRF framework
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INTEGRATION OF SPATIAL AND SPECTRAL INFORMATON

Hierarchical Segmentation (HSEG)

*  HSEG produces a set of image segmentations (segmentation hierarchy):
V' Coarser segmentations produced from merges of regions from fizer segmentations.

v Region boundaries maintained at the full image spatial resolution.

HSEG is a hybridization of Hierarchical Step-Wise Optimization (region growing)
with spectral clustering, controlled by spe/ust_mght (an input parameter).

* A recursive approximation of HSEG, called RHSEG, is much more
computationally etficient (especially for spclust_wght > 0.0):
*  RHSEG recursively subdivides the image data and then recombines the results

such that the number of regions handled at any point in the program 1s
restrained.

. The recombination step of RHSEG requires special blending code to avoid
processing window artifacts.
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Why High-Performance Computing is Crucial?

Fire Temperatures

—AVIRIS
— Estimate
— Residual

Radiance(uW/cm"2/nm/sr) .

WTC Hot Spot Area A
Hottest Spectrum

Temperature Estimate=928K
6% of the area

\
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Wavelength (nm)
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Biomass Burning: Sub-pixel temperatures
and extent, smoke, combustion products...

Environmental Hazards: Contaminants
(direct and indirect), geological substrate...

Coastal and Inland Waters: Chemical and
biological standoff detection, oil spill
monitoring and tracking...

Ecology: Chlorophyll, leaf water, lignin,
cellulose, pigments, structure,
nonphotosynthetic constituents...

Commercial Applications: Mineral
exploration, agriculture and forest status...

Military Applications: Detection of land
mines, tracking of targets, decoys...

Others: Human infrastructure, medical...
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Parallel Framework for Morphological Methods

Processing node #1

MEI
3x3 SE - > = - o
~
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~ MEI,
h N
Original image A
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-
3x3 SE ——— >|)_£|— -
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Processing node #2

7’

~
iy

Gather

Py 4
s

Classification map

*  'The master processor 1s in charge of distributing the work among the workers.

e  Each partition is processed zndependently, and the master gathers the final result.

_:e;ancLRemthvSe‘nsing Symposium, 2006

Advanced Processing of Hyperspectral Images




ROSIS Urban Hyperspectral Data Over Pavia, Italy

Subset #2

Subset #3
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HYPERSPECTRAL DATA

AVIRIS Data Over Cuprite, Nevada

Scaled Reflectance (USGS)

Scaled Reflectance (USGS)

«—— Nontronite

O T T T T T T
400 700 1000 1300 1600 1900 2200 2500
Wavelength (nm)
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Standard SVMs vs Transductive SVMs.-

¢ Tested using AVIRIS data over Indian Pines, made up of 16 ground-truth classes
(7 classes were discarded due to insufficient training samples).

*  Gaussian RBF classifier and one versus the rest architecture with 9 binary classifiers.

Alfalfa

Com

Oats

Wheat
Woods

Com—notil
Com-min

Grass—Pasture
Grass-Trees
Grass—-Pasture-mowed
Hay-windrowed

Soybean-notill
Soybean-mintill
Soybean-clean

Bldgs-Grass—Trees—Drives
Stone-—steel-towers

background
Percentage Number Owverall Accuracy Kappa
of Training of Proposed Proposed
Samples Samples SVMs TSVMs SVMs TSVMs
5% 237 73.41 76.20 0.68 0.71
10% 475 76.46 80.21 0.73 0.77
25% 1189 82.17 84.83 0.79 0.82
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Composite Kernel-Based Image Classification.-

*  Excellent results on a wide range of scenarios (tested on all 16 Indian Pines classes)

Overall accuracy | Kappa
Spectral classifiers!
Euclidean ( IH.{l_]‘ll(ll‘]] and I,mu?gre:he_, 1998) | M Tf"ﬂé’MtZP
bLOOC+DAFE+ECHO (Tadjudin and Landgrebe, 1998) 82.91
k., (Gualtieri, 1999) 87.30
k., (developed in this paper) 88.55 0.87
Spatial/spectral classifiers
Mean
Spatial 84.55 0.82
Stacked 94.21 0.93 Spefllrﬂ[
Summation 92.61 0.91
Weighted 95.97 0.94 S VM
Cross-terms 94.80 0.94
Summation + Stacked 95.20 0.94
Cross-terms + Stacked 95.10 0.94
Mean and standard deviation *
Spatial §8.00 0.86
Stacked 94.21 0.93
Summation 95.45 0.95 Wez;g/ﬁea’
Weighted 96.53 0.96 Kgme /
Summation + Stacked 96.20 0.95

*  More advanced contextual/textural extractions can be easily integrated.
*  Extensions to multi-temporal and semi-supervised versions yield good results.
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RESULTS: ANALYSIS OF URBAN AREAS

' #1S Urban Data
DAFE/MRF | Neuro-fuzzy
Overall accuracy 97.27 97.29
Water 99.04 99.71
Trees 91.27 93.19
Grass 97.09 94.80
Parking lot 76.83 71.99
Bare soil 93.33 93.36
Asphalt 99.65 81.87
Bitumen 88.45 96.42
Tiles 08.33 99.98
Shadow 99.86 99.93

FUZZY ARTMAP DAFE/MRF

. Similar classification accuracies

e  Different performances in border areas

* The DAFE/MRF frawework achieves better geometrical characterization of

buildings and roads.

*  The neuro-fuzzy procedure performs better in homogeneuos areas.
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Extended Morphological Profiles vs Spectral Info.-

*  PCA was applied to the original spectral information, and the first #hree principal
components were retained (99% of the cumulative variance).

*  Morphological profiles were constructed for each component, based on 10
opening/closings by reconstruction and a disk-shaped structuring element.

*  C(lassification results using 102 spectral bands vs. 63 morphological features:

Original spectral information Extended morphological profile
Overall accuracy 80.99 85.22
Average accuracy 88.28 90.76
Kappa 76.16 80.86
Asphalt 83.71 95.36
Meadow 70.25 80.33
Gravel 70.32 87.61
Tree 97.81 98.37
Metal Sheet 99.41 99.48
Bare Soil 92.25 63.72
Bitumen 81.58 98.87
Brick 92.59 95.41
Shadow 96.62 97.68
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PARALLEL PERFORMANCE EVALUATION

]
a
a
Thunderhead (NASA) -
]
H r
. A |
http://thunderhead.gsfc.nasa.gov : : :
/Goddard Space Flight H : .
nier ' : : [ ]
i : : i
Aggregate Specification i H . -
Mumber of nodes 256 i i E .
Total processors A12 . . .
Total memary (Gh) 246 : H
Total disk (GH) 20480 i E
Interconnect 1 Myrinet 2000 : -
Interconnect 2 Gigabit Ethernet _ i L
Total peak perdformance (Gflops) | 24576 HYDRA Clustes: i
Node Specification . L
Motherboard Tyan Thunder 2720 : .
Mumber of processors Dual Intel 4 Xeon 2.4Ghz] [l
Memory (Gh) 1 .
Local disk (Gh) 80 -
Interconnect 1 Myrinet 2000 L
Interconnect 2 Gigahit 10010001 000 NASA Summer School for High
Peak performance (Gllops) 9.6 Performance Computing:
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PARALLEL PERFORMANCE EVALUATION

Performance of Morphological Endmember Extraction.-
*  Algorithms were implemented in C++ using calls to Message Passing Interface (MPI).

*  Using redundant computations versus communications was crucial:.

256 256
—1 1iteration —0— 1 iteration
***| —e—3iteratiors 24| e 3iterations
192 1 —A— S5iterations 192 - s 5 iterations
—— Linear .
0, 160 - @, 160 { — Linear
2 =)
'% 128 - 'g‘ 128
N 96 N 6
64 64 |
32 ] 32 o
Redundant computatlons Interprocessor communications
0 T T T T T O T T T T T T T
0 32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 256
Number of CPUs Number of CPUs

Processing times (seconds) for different numbers of processors on Thunderhead (AVIRIS Cuprite)

Redundant 9452+13 4075+10 917+12 381+11 205+15 128+16 | 89+14 | 65+11 50+10
WEIe R0 9356+143 | 4062+151 | 889+160 | 371+194 | 205+225 | 124+243 | 83+261 | 62+268 | 49+292

A. Plaza et al., “A quantitative and comparative analysis of endmember extraction algorithms,” IEEE-TGARS (42), 3, 650-663, 2004
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PARALLEL PERFORMANCE EVALUATION

Performance of Parallel Support Vector Machines
MPI Code to Implement boss workers:

E O ) D) Processors are asynchronous (not in
=D 9 9 =D =HhOHF lockstep):Who finishes first is non-
c c — deterministic. Boss processor keeps track,
— G == n_proc —1workers do the work. If all sub-
=d GCG=0C o= 3 G (3 = tasks take the same time, then speedup is

linear for n_tasks <n_proc-1
However..

Results for Indian Pines Data 16 classes: 145 x 145 pixels 200 bands/pixels => build 120 pair
classifiers: 120 training tasks + 120 testing tasks + 1 voting task (could have done
training+testing as a single task)

3.5 T T T T T T T T T
communications overhead
3_
o225 .
3 time,
@ train
& af
saturation
15 i
1 1 1 1 1 1 1 1 1 1
L 10 15 20 25 30 35 40 45 50 m1 . * m2 .
n_proc train train
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PARALLEL PERFORMANCE EVALUATION

Performance of Recursive Hierarchical Segmentation (RHSEG).-

*  Key concern: selecting an appropriate dissimilarity function.

. Currently available functions: 1-norm, 2-norm, inf-norm, BSMSE, BMMSE.

*  Parameter spclust_wght gives a lot of flexibility for the integration of spatial/spectral info.

1-Norm 2-Norm oco-Norm BSMSE BMMSE spclust_wght = 1.;) spclust_wght = 0.5 spclust_wght = 0.1
91.5 90.5 89.1 90.5 89.1 90.5 (9 regions) 96.5 (14 regions) 97.7 (18 regions)

Impact of dissimilarity function on classification of Subset #3 Impact of spclust_wght on classification of Subset #3

(Region means modeled as the mean of each ground-truth class) (Region means were initialized using the ground-truth data)

Processing times (seconds) for parallel RHSEG executed on Thunderhead (Subset #3 or ROSIS data)

Recursive ™
Hierarchical _ 1

Segmentatlnn

| o e N
http://tco. gsfc nasa.gov/iRHSEG/index.html
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CCONCLUSIONS s RN X
Conclusions

* The introduction of the concept of imaging spectroscopy by Alex Goetz
established the foundations a field which is still emerging in the design of
data processing techniques.

* The special characteristics of hyperspectral images pose new processing
problems, not found in other types of remote sensing data.

* Kernel methods offer an interesting solution to deal with the high-
dimensional nature of the data and the limited availability of training samples
(supervised classification).

* The integration of spatial and spectral information allows for the development
of enhanced supervised/unsupervised analysis techniques.

* Most of the algorithms discussed in this work are dominated by regular
computations (appealing for the design of parallel implementations).

* Techniques developed in this work show the increasing sophistication of a
field that is rapidly maturing at the intersection of many different disciplines.
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