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Spectral mixture analysis: Determines the 
abundance of materials (e.g. precision agriculture).

Characterization:  Determines variability of 
identified material (e.g. wet/dry sand, soil particle 
size effects).

Identification: Determines the unique identity of 
the foregoing generic categories (e.g. land-cover or 
mineral mapping). 

Discrimination: Determines generic categories of 
the foregoing classes.

Classification: Separates materials into spectrally 
similar groups (e.g., urban data classification).

Detection: Determines the presence of materials, 
objects, activities, or events.
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INTRODUCTION TO HYPERSPECTRAL IMAGING
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Challenges in hyperspectral image processing

• The special characteristics of hyperspectral data pose several processing problems:

1. The high-dimensional nature of hyperspectral data introduces important 
limitations in supervised classifiers, such as the limited availability of 
training samples or the inherently complex structure of the data.

2. There is a need to integrate the spatial and spectral information to take 
advantage of the complementarities that both sources of information can 
provide, in particular, for unsupervised data processing.

3. There is a need to develop parallel algorithm implementations, able to 
speed up algorithm performance and to satisfy the extremely high
computational requirements of time-critical remote sensing applications.

• In this work, we have taken a necessary first step towards the understanding and 
assimilation of the above aspects in the design of last-generation hyperspectral image 
processing algorithms.



NASA/Jet Propulsion Laboratory’s Airborne Visible Infra-Red Imaging Spectrometer

CLASSIFICATION USING KERNEL METHODS

Support Vector Machines (SVMs)
• High-dimensional spaces are mostly empty, making density estimation difficult.
• SVMs consider geometrical rather than statistical properties of the classes.

Kernel-trick allows one to work in the mapped kernel space.
No need to know the mapping function:

Polynomial kernel:

SAM kernel:

Gaussian RBF kernel:

Advanced Processing of Hyperspectral Images 4IEEE International Geoscience and Remote Sensing Symposium, 2006



Composite Kernels for Image Classification
• Some Properties of Mercer’s kernels:

Sum of valid kernels is a valid kernel.
Scaling a valid kernel by a positive factor is a valid kernel
Tensor product of valid kernels is a valid kernel.

• From Functional Analysis, the direct sum of Hilbert spaces allows elegant integration of 
different information sources in any kernel machine.

• To decompose the spectral and contextual/spatial information and merge it in the composite kernel.
• New family of composite kernels developed, accounting for spatial, spectral and cross-

information simultaneously.

CLASSIFICATION USING KERNEL METHODS
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CLASSIFICATION USING KERNEL METHODS

Transductive Support Vector Machines (TSVMs)
• Based on the joint use of labeled and unlabeled patterns in the framework of a 

transductive iterative learning process.
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CLASSIFICATION USING KERNEL METHODS
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Transductive Support Vector Machines (TSVMs)
• Important issues:

Selection of transductive samples. Goals: 
i) To select samples with an expected accurate labeling; 
ii) To choose informative samples. 
Iterative selection procedure designed to choose a balanced number of labeled 
and transductive samples (unlabeled patterns closest to margin bounds).
Threshold criterion. To select transductive samples in a small solution space, a 
threshold criterion is used to consider the density of the selected area. A pairwise
labeling strategy is used to alleviate the problem of unbalanced classes.
Regularization parameter. Used to control the number of misclassified 
samples that belong to the original training set and the unlabeled set. The larger 
the regularization parameter, the higher the influence of the associated samples 
on the selection of the discriminant hyperplane.
Multi-class extension. As in standard SVMs, the transductive process is based 
on a structured architecture made up of binary classifiers. It must be possible to 
give a classification label to all unlabeled samples (one versus the rest).



Spectral processing Spectral processingSame output 
results

Why integrated spatial/spectral approaches?
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INTEGRATION OF SPATIAL AND SPECTRAL INFORMATION

• Much effort has been given to processing hyperspectral image data in spectral terms.

• Data analysis is carried out without incorporating information about spatial context.

• There is a need to incorporate the image representation of the data in the analysis.

• Most available approaches consider spatial and spectral information separately.

• Several approaches considered in this work to achieve the desired integration.

Pixel spatial coor-
dinates randomly

shuffled



Mathematical Morphology
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INTEGRATION OF SPATIAL AND SPECTRAL INFORMATION

• Grayscale morphology relies on a partial ordering relation between image pixels.
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• Morphological operations for hyperspectral imagery require ordering of image pixels.

• Two strategies explored in this work: vector-based ordering and PCA-based ordering.
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• Based on a spectral distance function (SAD, SID) and a cumulative distance measure.

• The greatest element is the most spectrally distinct (pure) in the structuring element.

• The least element is the most spectrally similar (mixed) in the structuring element.

• Extended dilation has the effect of expanding pure spectral areas in the image.

• Extended erosion reduces pure spectral areas and expands mixed areas.

• Particularly suited for spatial/spectral endmember extraction.

Vector-based ordering
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INTEGRATION OF SPATIAL AND SPECTRAL INFORMATION



INTEGRATION OF SPATIAL AND SPECTRAL INFORMATION

50% Vegetation + 50 % Soil

100% Vegetation pixels

100% Soil

N2 ZZ: →f

Automated Morphological Endmember Extraction.-
• Integration of spectral and spatial information (computation intensive)
• Selection of the most spectrally pure and the most spectrally mixed signatures.

MEI
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Classification Using Morphological Profiles.-
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INTEGRATION OF SPATIAL AND SPECTRAL INFORMATION

Uses opening and closing operations to create a feature vector for classification:

Extended Morphological Profile.-

Feature Extraction
PCA

PC1

PC2

PCn

Morphological 
Profile

MP1

MP2

MPn
Extended

MP

Provides information about the size of the structures (MP), 
the local constrast (MP) and the spectrum (PCA).



INTEGRATION OF SPATIAL AND SPECTRAL INFORMATION
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• Minimization of a cost function:
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• Integration of the pattern recognition capability of a neuro-fuzzy classifier and the
spatial/spectral nature of the probabilistic ML-based MRF framework
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• HSEG produces a set of image segmentations (segmentation hierarchy):
Coarser segmentations produced from merges of regions from finer segmentations.
Region boundaries maintained at the full image spatial resolution.

• HSEG produces a set of image segmentations (segmentation hierarchy):
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Region boundaries maintained at the full image spatial resolution.

INTEGRATION OF SPATIAL AND SPECTRAL INFORMATON

Hierarchical Segmentation (HSEG)Hierarchical Segmentation (HSEG)
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• HSEG is a hybridization of Hierarchical Step-Wise Optimization (region growing) 
with spectral clustering, controlled by spclust_wght (an input parameter).

• HSEG is a hybridization of Hierarchical Step-Wise Optimization (region growing) 
with spectral clustering, controlled by spclust_wght (an input parameter).

• A recursive approximation of HSEG, called RHSEG, is much more 
computationally efficient (especially for spclust_wght > 0.0):
• RHSEG recursively subdivides the image data and then recombines the results 

such that the number of regions handled at any point in the program is 
restrained.

• The recombination step of RHSEG requires special blending code to avoid 
processing window artifacts.
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PARALLEL IMPLEMENTATIONS

Why High-Performance Computing is Crucial?

Biomass Burning: Sub-pixel temperatures 
and extent, smoke, combustion products…

Environmental Hazards:  Contaminants 
(direct and indirect), geological substrate…

Coastal and Inland Waters: Chemical and 
biological standoff detection, oil spill 
monitoring and tracking...

Ecology: Chlorophyll, leaf water, lignin, 
cellulose, pigments, structure, 
nonphotosynthetic constituents…

Commercial Applications: Mineral 
exploration, agriculture and forest status…

Military Applications: Detection of land 
mines, tracking of targets, decoys...

Others: Human infrastructure, medical...
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Original image
Classification map

PSSP1 MEI1

Processing node #1

3x3 SE
MEI

PSSP2

Scatter
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MEI2

Processing node #2

Gather

PARALLEL IMPLEMENTATIONS

Parallel Framework for Morphological Methods

• The master processor is in charge of distributing the work among the workers.
• Each partition is processed independently, and the master gathers the final result.
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HYPERSPECTRAL DATA
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ROSIS Urban Hyperspectral Data Over Pavia, Italy

Subset #1 Subset #2

Subset #3



HYPERSPECTRAL DATA
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AVIRIS Data Over Cuprite, Nevada
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RESULTS: LAND-COVER CLASSIFICATION
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Standard SVMs vs Transductive SVMs.-
• Tested using AVIRIS data over Indian Pines, made up of 16 ground-truth classes

(7 classes were discarded due to insufficient training samples).
• Gaussian RBF classifier and one versus the rest architecture with 9 binary classifiers.



RESULTS: LAND-COVER CLASSIFICATION

Composite Kernel-Based Image Classification.-
• Excellent results on a wide range of scenarios (tested on all 16 Indian Pines classes) 

• More advanced contextual/textural extractions can be easily integrated.
• Extensions to multi-temporal and semi-supervised versions yield good results.

TrueMap

Spectral
SVM

Weighted
Kernel
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RESULTS: ANALYSIS OF URBAN AREAS

• The DAFE/MRF frawework achieves better geometrical characterization of
buildings and roads.

• The neuro-fuzzy procedure performs better in homogeneuos areas.

• Similar classification accuracies
• Different performances in border areas

DAFE/MRF

Subset #1 ROSIS Urban Data

FUZZY ARTMAP
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RESULTS: ANALYSIS OF URBAN AREAS
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Original (Subset #2) Original spectral info EMP

Extended Morphological Profiles vs Spectral Info.-
• PCA was applied to the original spectral information, and the first three principal 

components were retained (99% of the cumulative variance).
• Morphological profiles were constructed for each component, based on 10 

opening/closings by reconstruction and a disk-shaped structuring element.
• Classification results using 102 spectral bands vs. 63 morphological features:



PARALLEL PERFORMANCE EVALUATION

Thunderhead (NASA)
http://thunderhead.gsfc.nasa.gov
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PARALLEL PERFORMANCE EVALUATION

Performance of Morphological Endmember Extraction.-
• Algorithms were implemented in C++ using calls to Message Passing Interface (MPI).

• Using redundant computations versus communications was crucial:.
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A. Plaza et al., “A quantitative and comparative analysis of endmember extraction algorithms,” IEEE-TGARS (42), 3, 650-663, 2004



Performance of Parallel Support Vector Machines

PARALLEL PERFORMANCE EVALUATION

Processors are asynchronous (not in 
lockstep):Who finishes first is non-
deterministic. Boss processor keeps track, 
n_proc – 1 workers do the work.  If all sub-
tasks take the same time, then speedup is 
linear for n_tasks < n_proc-1
However..

MPI Code to Implement  boss_workers:
algorithm 

Results for Indian Pines Data 16 classes: 145 x 145 pixels 200 bands/pixels => build 120 pair 
classifiers: 120 training tasks + 120 testing tasks + 1 voting task (could have done 
training+testing as a single task) 

saturation

communications overhead
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PARALLEL PERFORMANCE EVALUATION
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http://tco.gsfc.nasa.gov/RHSEG/index.html

Performance of Recursive Hierarchical Segmentation (RHSEG).-
• Key concern: selecting an appropriate dissimilarity function.

• Currently available functions: 1-norm, 2-norm, inf-norm, BSMSE, BMMSE.

• Parameter spclust_wght gives a lot of flexibility for the integration of spatial/spectral info.

Impact of dissimilarity function on classification of Subset #3
(Region means modeled as the mean of each ground-truth class)

Impact of spclust_wght on classification of Subset #3
(Region means were initialized using the ground-truth data)

1 4 16 64 256

Time 2061 568

Speedup 1.0 3.6 13.3 49.9

155

82.4

2548

Processing times (seconds) for parallel RHSEG executed on Thunderhead (Subset #3 or ROSIS data)



CONCLUSIONS
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ConclusionsConclusions
• The introduction of the concept of imaging spectroscopy by Alex Goetz

established the foundations a field which is still emerging in the design of 
data processing techniques.

• The special characteristics of hyperspectral images pose new processing 
problems, not found in other types of remote sensing data. 

• Kernel methods offer an interesting solution to deal with the high-
dimensional nature of the data and the limited availability of training samples 
(supervised classification).

• The integration of spatial and spectral information allows for the development 
of enhanced supervised/unsupervised analysis techniques.

• Most of the algorithms discussed in this work are dominated by regular 
computations (appealing for the design of parallel implementations).

• Techniques developed in this work show the increasing sophistication of a 
field that is rapidly maturing at the intersection of many different disciplines.
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