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Soil structure as a determinant
of trophic interactions

Soil physical structure Trophic interactions

Soil physics Soil food web ecology
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* Hypothesis: Restrictions imposed on soil organisms’ ability to sense and access food resources/prey by

soil physical structure essentially shape trophic interactions in soil, while affecting soil biodiversity.

* Main goal: Reviewing mechanisms underlying the effect of soil physical structure on soil food webs.

Erktan et al., (2020) SBB
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Water filled pores

Restriction of mobility of aquatic organisms
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Volatile concentration

1. Restriction of prey
detection via reduced
transport of volatiles

Dead-end pore Pore neck Lower diffusion in liquid phase

2. Restriction of

prey
accessibility

Size segregation Pore connectivity Continuity of the aqueous phase




Soll structure as a consequence
of trophic interactions

Trophic interactions
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Jones (1994, 1997) Ecosystems engineers as a class of organism
Lavelle et al. (1997)

“Physical ecosystem engineers are organisms that directly or
indirectly control the availability of resources to other organisms by
causing physical state changes in biotic or abiotic materials.”

Erktan et al. (submitted at EGS)



Capowiez et al. 2012

Jones (1994, 1997)
Lavelle et al. (1997)

Earthworms

Source: Soil Biodiversity Atlas
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Ecosystems engineers as a class of organism

Burrowing
bees

Erktan et al. (submitted at EGS)



Capowiez et al. 2012

Jones (1994, 1997)
Lavelle et al. (1997)

Darwin (1809-1882)

Source: Soil Biodiversity Atlas

Earthworms

control compacted
soil

Earthworms

Ecosystems engineers as a class of organism

Burrowing
bees

Chenu et al. 1993

Cryo-SEM kaolinite-xanthan;
EPS content 2,5% w/w clay

Brussaard et al. (2012)

Erktan et al. (submitted at EGS)



Bacteria

Tecon and Or, (2017)

electron

Scanning
bacterial cells attached to solid surfaces by
exopolysaccharides (filamentous mesh).

microscopy images of

Extra polymeric substances (EPS) glue soil particles
together (Chenu, 1993)

They have many roles in bacterial ecology (Costa et al.,
2018)

EPS production and type depends on bacterial strains
(Caesar Tonthat et al., 2014)
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Figure 2. (A) Active Colpoda sp. carrying fluorescent red beads. (B)
Encysted Colpoda sp. with fluorescent red beads. (C) Active Colpoda
sp. in an unstructured microfluidic device, carrying unfixed GFP-
expressing P. fluorescens. (D) Encysted Colpoda sp. in a soil-patterned
microfluidic device carrying fixed GFP-expressing P. fluorescens. All
scale bars are 20 gm.

* Protists carry clay particles and bacteria

Figure 3. Beads in a small portion of region 1 with treatment and time.
The arrow indicates a single fluorescent bead. The scale bar is 100 ym.




Collembolan

A

Fig. 1. Examples of image analysis with four concentric circles of 1, 2, 3 and 4 cm
diameter placed around the feeding station (left: initial photo, right: day 5). The
amount of particles was counted in each ring and used for analysis. (photos: D. Daphi).

Collembolans transports particles up to 200 um diameter
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Ecosystems engineers as a class of organism ... toward multifunctional organisms
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Ecosystems engineers as a class of organism ... toward multifunctional organisms

Multitrophic biodiversity
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e Bacterial-based interaction
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Adding microbial predators modified soil aggregation
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Fungi (F)
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Direct effects

Indirect effects

Redistribution

of soil Physical effect

organisms

Trophic
effects

- Gluing effect of mucilage on clay, leading
to microaggregate formation (B, F)

- Particle enmeshment (mainly F)

- Redistribution (P) and realignement (F)
of clay sized particles

- Fungal highway for bacteria (F)

- Fungal spore and bacteria dispersal
via actively mobile bacteria or protists
(B, F)

- Predator-prey interaction influence the
microorganisms abundance and
composition

- Influence higher trophic level as being
their food source

- Create mesopores (E ?)

- Move small sand particles (+ 100 um)
within existing pore space (C)

- Form (and break) microaggregates
(enchytreids faecal pellet)

- Disperse fungal spores attached to their
cuticle within pore space (C)

- Redistribute organic matter and microbes via
faecal pellets within pore space (C)

- Move soil organic matter via molting, egg
and necromasse

- Modify the abundance and composition
of the microbiota through predatory
interactions

- Influence higher trophic level as being
their food source

- Create macropores (mm) (E, T, A)

- Move mineral particles via ingestion (E, M)
or transport in mandibules (A, T)

- Release of mucus (E) or saliva (A, T)
cementing soil particles (macroaggregate)

- Mix organic debris and microbiota by
ingestion and release of faeces (E, M),
transport of organic matter in their
mandibules (A) and transport of fungal
spores, bacteria or microarthropods eggs on
their cuticle (E, T, A)

- Modify the abundance and

composition of the mesofauna and
microbiota through predator-prey
interactions



Soil physical structure influences trophic interactions by e.g.:

1. Limiting sensing of food sources (via restricting the transport of volatiles
through soil pores)

2. Restricting the overall mobility of organisms and the accessibility of
resources / prey in small pores

* Feedback effect on soil organisms, and their interactions, on various
aspects on the soil physical structure

* These restrictions promote soil biodiversity and select for specific
adaptations for feeding in the dark soil labyrinth while allowing survival
of weak competitors by reducing the strength of biotic interactions.

* Quantitative incorporation of effects of physical structure on trophic
interactions requires interdisciplinary efforts for merging food web
ecology and soil physics.

= Soil pore size,
connectivity, etc.
SOIL PHYSICAL

STRUCTURE | - Water distribution

= Location and diversity
of food resources

to resources via providing of soil mineral and

Driving sensing and access Relocating and mixing
refuge and limiting mobility organic compounds
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Thank you for your attention

Source: FAO



The soft body of amoebae allowing them to adopt virtually any
shape is an adaptation enhancing prey accessibility in the soil (or
sediment) matrix and thereby the fitness of these organisms.

* For nematodes, that are larger than protists, tri-partite interactions
between bacteria, protists and nematodes may be considered as
adaptation allowing them to benefit from the access to hidden
bacterial prey by protists.

* The dominance of omnivory and food flexibility among
microarthropods may as well be viewed as an adaptation to the
scarcity and discontinuous accessibility of food resources in space
and time in the soil matrix.

* Adaptations also concern prey species by increasing protection
from predators. For example, soil structure can induce changes in
prey mobility resulting in enhanced avoidance of predators.
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malter

Erktan et al., (2020) SBB



3D printing soils
(Wilfred Otten)

Soil Chips
(Edith Hammer)

soil physics

Need for (i) improved knowledge on small-scale
habitats of soil organisms, especially for those unable
to modify or create their own pore space, and (ii)
laboratory studies to experimentally explore how soil
physical structure drives trophic interactions within
and among micro-, meso- and macrofauna.

Soil food web ecologists need to include descriptors of
the characteristics of soil physical structure as standard
parameters in the analysis of soil food webs:
partnering with soil physicists and ecohydrologists.

Linking the composition of soil microbial hotspots to
the microbial gut content of microarthropods

Experimental studies will be indispensable for
improving the mechanistic understanding of the role
of soil physical structure for trophic interactions (ex:
Soil chips, 3D printing, etc.)



Contribution from the AGG-REST-WEB project
Soil physical structure Trophic interactions
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Water film distribution
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* Microbial biodiversity, activity

* Feeding regimes (quantitative,
quantitative and temporal
dynamics)

Soil food web ecology

Connections already t
developed with varying
advance status Soil biochemistry

* Fluxes of elements (C, N, etc.)



ysical structure

Soil structure is dynamic and strongly influenced by the activities of soil organisms. However, most studies
considered organisms in isolation and the role of trophic relationships and interactions on soil structure has rarely
been in focus of scientific studies.

Even though often not considered as such, the effect of earthworms and more widely geophageous organisms in
general feeding on microbes by ingesting soil is a trophic interaction with major consequences for the physical
structure of soils. For example, the feeding activity of earthworms result in compaction

Soil micro- and mesofauna species typically cannot drill into the soil and form pores for their own habitat.
Nevertheless, however, they may substantially affect the physical structure of soils, notably because many of them
feed on microbes that are key players in forming soil physical structure (consumption, physiological changes,
transport, etc..).

Altogether, microbial consumers, such as protists, nematodes and microarthropods, are thought to impact soil
physical structure mainly by modifying microbial communities, either directly via trophic interactions or through
associated non-trophic interactions, such as the transport of microbial propagules on their body surface. While
their effect is undoubtedly less strong than that of ecosystem engineers (and roots), we argue that they may be
substantial and are currently largely negelected.



