
HeatSense: Data-driven climate change 

adaptation in poultry

Data-Driven Discoveries in a Changing Climate Investment Theme



A changing climate

2



▪ Heat stress is also important 

indoors

Animals kept in controlled environments?

3Fodor et al., 2023
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Both short-term and long-term solutions for climate change adaptation needed

→ Tools or directions for well-adapted future poultry production



The team
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▪ Changes in behaviour first indicator of potential heat stress

● Drinking 

● Lying laterally

▪ Can serve as input for fast detection of heat stress and automated 

cooling

Automated early detection of HS
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▪ Model trained on bounding box detection

● Training data: 532 frames

● Validation set: 176 frames

Automated detection of drinking behaviour
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Data: Henry van den Brand

Analysis: Marjaneh Taghavi



Comparison with manual observations
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Manual observations CV detections



▪ Part 1: Build upon existing closed barn cooling models to include

● short-term weather predictions

● animal behaviour observations

● animal physiological input

▪ Part 2: Develop an adaptive control system that makes real-time 

decisions to determine when and how to activate cooling systems

Adaptive cooling strategy in barns
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▪ Observation variables (Solar radiation 𝐼𝑠 (𝑊𝑚−2), Temp in/outside 

𝑇𝑖/𝑇𝑜(℃), ventilation rate 𝑅𝑎(𝑚
3𝑠−1))

▪ The indoor climate is computed by:

ൗ𝑑𝑇𝑖
𝑑𝑡 = 𝑝1𝑇𝑖

2 + 𝑝2𝑇𝑖 + 𝑝3𝑇𝑜 + 𝑝4𝑅𝑎𝑇𝑖 − 𝑝5𝑅𝑎𝑇𝑜 + 𝑝6𝐼𝑠

● 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6 need to be calibrated

Part 1: modelling indoor climate (1)
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▪ Training with 1500 data points

● Max temp prediction error 

3.8951 °C

● Average prediction error 

0.7015 °C

Part 1: modelling indoor climate (2)
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Part 2: reinforcement learning (1)
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▪ Reinforcement learning method proximal policy optimalization

● Ventilation [0-81], Evaporation [0,1]

● Reward

𝑅 = −𝑟𝑡𝑒𝑚𝑝 − 𝑟𝑒𝑣𝑎𝑝 − 𝑟𝑒𝑛𝑒𝑟𝑔𝑦

▪ Baseline (rule-based)

● Full speed ventilation & evaporative cooling

Part 2: reinforcement learning (2)
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▪ Heat stress with every control strategy

▪ Rule-based control best at avoiding heat stress but high energy cost

Part 2: reinforcement learning (3)
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▪ Indoor climate model without 

● heat emission from birds

● humidity model

● considering chicken drinking/lying behaviors

▪ The full cooling capacity is smaller than the summer heat

▪ RL control actions have too many oscillations 

▪ RL reward function and RL agent still need improvements

Limitations and next steps
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▪ What is the effect of temperature (or THI) on laying rate?

Breeding potential: GxE interactions
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Green = not sensitive

Red = sensitive

Variation in slopes → differences 

in temperature sensitivity 

between sire families

Parameter of interest:

𝒗𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏 𝒅𝒖𝒆 𝒕𝒐 𝒔𝒍𝒐𝒑𝒆𝒔

𝒗𝒂𝒓𝒊𝒂𝒕𝒊𝒐𝒏 𝒅𝒖𝒆 𝒕𝒐 𝒊𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕𝒔



▪ Presentations

● Computer Vision and Robotics 

Parcours, Wageningen

● EAAP conference, Florence

● Dutch poultry farmer 

organisation, Wageningen

▪ Manuscripts in preparation

Outreach in the project
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▪ Currently investigating opportunities for setting up a follow-up Public 

Private Partnership and/or KB project

Continuation
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Thank you!

HeatSense project

malou.vandersluis@wur.nl
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