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Global Carbon Cycle
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Chapin et al., Principles of Terrestrial Ecosystem Ecology, 2012



Current Carbon Dioxide Removal (CDR)

Only a tiny fraction of all current carbon dioxide removal results from novel methods

Total current amount of carbon dioxide removal, split into conventional and novel methods (GtCO2/yr)

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 0.6 0.4 -0.2 0 GLCOz/yr

Almost all current carbon -
dioxide removal, 2 GECO2/yr, -
comes from conventional -
management of land and a tiny
fraction, 0.002 GtCO2/yr,
results from novel methods

U BECCS
Biochar
B Other novel COR

-0.003 . -0.002 . -0.001 0 GtCO2/yr

Smith et al., The State of Carbon Dioxide Removal, 2023
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Note: 1 Pg Cyl = 3.664 Gt CO, y!

> ® Dominantly
afforestation /
reforestation

® Small part
agricultural
soil carbon
sequestration



C sequestration related to land management

Forests

" Afforestration / reforestation

" Management of existing forests
Agriculture

" Soil organic carbon (SOC) sequestration
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Agricultural SOC sequestration

Global potential
" 0.6-9.3 Gt CO, y!

(Smith et al., The State of CDR, 2023)

Yet, highly dependent on:

" Durability (or permanence):

requires long-term
continuation of land use and
land management practices

B Saturation: is there a limit
to the amount of SOC a soil
can inherently store?

SOC content

No saturation

Saturation

SOC content at steady state

time C inputs at steady state

Adapted from Stewart et al., Biogeochemistry, 2007



Which management practices?

4 PER 1000
CABRSA SEGES TRATION i S0iLS
FOR FOOD SECURITY AND THE CLIMATE

HOW CAN SOILS STORE MORE CARBON?

The more soil is covered, the richer it will be in organic material and therefore in carbon.
Until now, the combat against global warming has largely focused on the protection and restoration of forests.
In addition to forests, we must encourage more plant cover in all its forms.

v Y s

Never leave : Introduce more : Add to the : Optimize : Restare
soil bare . intermediate crops, - hedges at field :  pasture management - land in poor
and work it less, . morerow intercropping : boundaries . - with longer . condition
for example by : and more : and develop : grazing periods, :  eg theworld’s arid
using no-till methods  : grass strips i agroforestry i for example ¢ and semi-arid regions

“This international initiative can reconcile
the aims of food security and the combat against climate change,
and therefore engage every concerned country in COP21”"
Stéphane Le Foll, French Minister of Agriculture, Agrifood and Forestry

No-till
Intercropping
Grass strips
Agroforestry

Grazing
management

Restoration of
degraded land




Benefits(?) of global SOC sequestration

Biomass = food security

C regulation =»
CC mitigation

Kopittke et al., Critical Rev. Env. Sci. Tec., 2022
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Mean predicted yield (kg ha™)

Synergies or trade-offs: it depends...
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Ma et al., Nature Geoscience, 2023
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Kindly provided by Gabriel Moinet (Soil Biology Group, WUR)



Direction of benefits can be opposite

SOC storage increases Yield benefit decreases
with clay content with clay content

Soil texture
p 14 imMercepis) = U.0005

C in fraction <20um (g kg soil)

E 20% p (slope) =0.047
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0 20 40 60 80 100 clay content
% particles < 20um ==t oot or tuber crop === spring sown cereal=== winter sown cereal
Hassink, Plant and Soil, 1997 Hijbeek et al., Plant and Soil, 2017
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The full picture is more nuanced

- Biodiversity
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Kopittke et al., Critical
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Potential of soil-based Carbon Dioxide Removal

Method

Afforestation/
Reforestation

Biochar

Soil carbon
sequestration

Peatland
and wetland
restoration

Agroforestry

Route of CDR’ TRL

(Geochemical capture via 3-4
spreading crushed silicate rocks

on land or ocean) -> (Storage in
minerals )

(Biological capture via trees) -» | 8-9
{ )

(Biolomical capture via cropping | 4-7
and forestry residues, organic

wastes, or purpose-grown

crops) -= { ]
(Biological capture via various | 8-9
agnicultural practices and

pasture management) -»
{ )

(Biological capture via 89
rewetting and revegetation) -»
{ )

(Biolomical capture via trees) -= | 8-9
{ )
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Cost at
scale

($/tco,)
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10 - 345

-45 - 100

Insufficient
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Insufficient
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Mitigation MRV
potential
(Gtco,/fyr)

Capture: low, no
Storage:
low, no

Capture:
high, yes
Storage:
high, yes

0.3-6.6 Capture-
high, yes™*
Storage-

med, yes**

Capture:
med, yes
Storage:
low, yes

Capturs:
low, yes
Storage-
low, yes
Capture-
med, yes
Storage:
med, yes

0521

0.5-%.4

Smith et al., The State of Carbon Dioxide Removal, 2023

Example hazards

Mining impacts; air quality impacts of rock
dust when spreading on land. Heavy metal
contamination, especially nickel and chromium,
from some rock types.

Reversal of COR through wildfire, disease, pests.
Reduced catchment water vield and lower
groundwater level if species and biome are
inappropriate.

Finite carbon carrying capacity of land; capacity
may be reduced under chimate change.

Particulate and greenhouse gas emissions from
biochar production; biodiversity and carbon stock
loss if from unsustainable biomass harvest.

Increased nitrous oxide emissions due to higher
levels of organic nitrogen in soil.

Finite capacity of soil to protect organic matter;
capacity may be reduced under climate change.

Increased methane emissions.

Trade-offs with agncultural crop production.

Example co-benefits

Reduced soil andity and increased nutnient supply,
which can enhance plant growth and soil carbon
sequestration.

Enhanced employment and local livelihoods, improved
biodiversity, improved renewable wood products
pravision, soil carbon and nutrient cycling. Possibly less
pressure on primary forest.

Increased crop yields; reduced non-CO, emissions from
soil; resilience to drought.

Improved soil quality, resilience and agricultural

productmity.

Increased productivity of fisheries, improved
biodiversity, sail carbon and nutrient cycling.

Enhanced employment and local Ivelihoods, vanety of
products, improved soil quality, more resilient systems.
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Storage type

Durability of soil-based Carbon Dioxide Removal

Trees & soils >

Geological formations

1,000 10,000 100,000

1 10 100
Characteristic timescale (years)

Figure 1.3. The durability of different carbon storage pools ranges from decades to tens of millennia. Note
that these timescales are indicative, assuming no premature disturbance. Source: IPCC WG32 ARS Chapters

& 12119,
Smith et al., The State of Carbon Dioxide Removal, 2023
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Mineral
rock dust
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Principle of Enhanced Rock Weathering (ERW)

_ ® Consumption of CO, via
Applied basalt or mill ash, Weatherlng Of mlnerals

. ; CO, from respiration of roots
which also contains K 2 : ; .
i s nies and other soil organisms a d d ed to SOi I S
CaSiOy )+ 2C0,, + 3H,0
l Weathering

waesraion ™ The formed inorganic

e carbon may remain in the
CaCOy, + SiOy, .
soil or leach out to

oceans and form minerals

Enhanced crop vigour and yield
due to greater uptake of Si, Ca,
K and micronutrients

T

Enhanced root growth dueto = 4 :
improved pH, nutrient supply <—/:
and physical conditions / /

» Enhanced ocean alkalinity
Weathering products in and growth of diatoms,

surface and groundwater runoff _foraminifera and corals | u But: What about CcO-
(less N, higher Si:N ratio) s .
— benefits and trade-offs?

Beerling et al., Nature Plants, 2018
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Co-benefits of ERW: increased nutrients & yield
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Co-benefits of ERW: reduced N,O emissions

|

 Plant

Nitrogen use
productivity I:> (3

efficiency

Basalt
amendments

1 Complete denitrification
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NO3 = NO >{IN,05> I N,

Snmne?

Chiaravalloti et al., Front. Clim., 2023

J N losses

Blanc-Betes et al., Glob. Change Biol.
Bioenergy, 2020
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Trade-offs of ERW: enhanced Ni release
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Te Pas, Hagens et al., Front Clim., 2023



Take-home messages

" High C sequestration potential in both conventional (SOC
sequestration) and novel (biochar, ERW) agricultural CDR methods

" But: understanding and constraining the co-benefits and trade-offs
are key to assess the full potential of each method
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