3D plant phenotyping using deep learning

Gert Kootstra 14 Dec 2022

Wageningen University and Research Digital Twin Conference 2022




Outline of this tutorial

" 10:00-10:40 Intro to 3D plant phenotyping using deep learning
" 10:40-12:00 Hands-on session
e Working with point clouds

e Using deep learning to segment a point cloud
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Outline of the introduction

" Introduction to 3D plant phenotyping
" 3D data acquisition

" Data processing

" Challenges

® Conclusion
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Introduction to 3D plant phenotyping

" Objectives
" Why 3D?
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Plant development

" Plant development Genoty‘pe'_“ |
is a result of the
interaction of the v
genotype (DNA) b&‘ E
and the '
environment

"G+E=P
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Level of automation

" In controlled environments
(greenhouses), we have a
lot of knowledge about the
environment

" Genetic information can be
gather efficiently with next-
generation-genotyping tools

" But the phenotype at plant
level is still mainly
measured by hand
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Digital plant phenotyping

" Automatic assessment of plant traits

" Better quality of measurements

e Objective measurements

® Node

]— Internod \

" Better quantity of measurements

e Moreplants

! Petiole

genotype biochemical phenotype macrosceypic




Introduction to 3D plant phenotyping

" Why 3D?
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Why 3D? A motivating 2D example

" Internode length and development
e Of interest for breeders
e Light interception
e Density of the crop

e Breeding for robotics
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Boogaard, F. P., Rongen, K. S., & Kootstra, G. (2020). Robust node detection and tracking in fruit-vegetable crops using deep learning and multi-view imaging.
Biosystems Engineering,192, 117-132. https://doi.org/10.1016/j.biosystemseng.2020.01.023




Legend:
[lis4820 ccD Camera
[l cucumber plant
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A robotic multi-view camera setup




Node detection using deep learning

" We used the YOLOvV3
neural network for
object detection

2 Feature
Darknet 53 = upsampling
Backbone 5

" Image with in total
10.314 nodes visible

" 4-folds Cross validation
with 75-25% split
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Detection layers

Detection layers
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Step 1: node detection

" Detection of nodes using

YOLOvV3
CV-run Validation Validation Validation
(-) precision (-) recall (-) F1 score (-)
1 0.93 0.91 0.92
2 0.95 0.92 0.94
3 0.96 0.93 0.94
4 0.95 0.93 0.94
Average 0.95 0.92 0.94
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Step 2: multi-view node clustering

2.00
2.00 — 200 d
@ ® @ = 1
T150 | e ® e 7 o 5 o °6
% O o £ 1.50 ® -%_ 1.50 - o5
- g~ ® o ®
5 1.00 8 % ® |eo? 9 9 o4
= S & » $ 1.00 s °? <. 1.00 e .
o ®« o % @ © s
s 8 £ 050 S 050 °
o 0 o1l
: :
0.00 E 0.00 " 0.00
0.00 0.50 1.00 0.00 0.50 1.00 0.00 0.50 1.00
X-coordinate (-) Transformed x-coordinate (-) Transformed x-coordinate (-)
(a) (b) (©)

Figure 5 — a) Node coordinates for one plant detected in multiple viewpoints, b) Detected nodes
mapped onto the reference coordinate frame and c) clustered node detections in the appropriate

order.

WAGENINGEN Affinity propagation clustering (Frey & Dueck, 2007)
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Step 3: Internode-length estimation results

Error (mm)
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Inlier Plants

Abs. error (mm)
40
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Accurate manual
Rough manual

Estimated, all

Est., without outl. § -

100°0>d

Error of estimations are generally
in range of [-10mm, 10mm]

This is not as accurate as
accurate human measurements

But more accurate than rough
manual estimation

But...

... estimation are quite off for
non-vertically growing plants

We need 3D plant phenotyping



Pipeline from 3D imaging data to a digital twin

PointNet++ TreeQSM
Segmentation Modeling

/— Phenotyping
Imaging % FSP Model
' Stemwor%
Extraction

3D data Point cloud Reconstruction Phenotypic
acquisition segmentation of plant parts traits
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3D data acquisition

" Different sensors and sensing technologies

" Multi-view approaches
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Different 3D sensors

Shape from silhouette
Laser triangulation
Structure from Motion and Multi-View Stereo

Terrestial laser scanners
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MARVIN

Shape from silhouette

VAT R e D
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Shape from silhouette




Laser triangulation

= PlantEye F500 of Phenospex ==
= High-resolution RGBI point cloud
= Partially complete point cloud
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Structure from motion and multi-view stereo

300 high-res photos
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Structure from motion and multi-view stereo

WAGENINGEN

UNIVERSITY & RESEARCH

23



3D data processing

" Multi-view 2D deep learning

" 3D deep learning: spatial vs spectral data
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3D data processing

" Multi-view 2D deep learning
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A multi-view deep-learning approach

3D Semantic
Segmentation

2D Semantic

Segmentation
3iD

Scgmentation

a‘._,

"X B z S e e

o ) 2D Instance
Multl-x:- iew Camera Segmentation
System

Image 3D Instance
& B “ 1
Acquisition Scgmentation

Shi, W., van de Zedde, R., Jiang, H., & Kootstra, G. (2019). Plant-part segmentation using deep learning and multi-view vision. Biosystems Engineering,187, 81-95



Instance segmentation

" Mask R-CNN
Ren et al. (2017)

Feature maps Fix-sized feature maps Fully connected layers
l 1 Category labels witl/"\
/ confidence scores stem 0.990

Bounding boxes

RolAlign

Fully convolutional layers
|

. RPN ' Masks

Input A feature extraction A region-proposal Instance detection and
network network segmentation networks

===y
' Ry : leaf 0.990
|
|
|
|

Output
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Multi-view voting

Point j belongs Lo class 3
(Probability: class 1 =0, class
2 = 10%, class 3 = 90%)

Point j
X.y,z=(131,111,58)

X, y, class
=(624, 682, 3)

Voting strategy

Predicted label of 3D point cloud

3D point ¢cloud of a seedling

Find corresponding pixel in each image to point j

Image 9

Semantic or Instance segmentation on 2D

WAGENINGEN
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Shi, W., van de Zedde, R., Jiang, H., & Kootstra, G. (2019). Plant-part segmentation usingdeep learning and multi-view vision.Biosystems Engineering,187, 81-95



Results instance segmentation

Input images

1”.’111

v J Ny

Colour

PTCdlCthﬂS o’r 2D instance segmentation




Results instance segmentation

Stem
Leaf 1
Leaf 2

Pixel-wise instance segmentation

Precision Recall F1-score
4 2D 3D ) P-value 4 2D 3D ) P-value 4 2D 3D ) P-value
0.77 (0.16)  0.97 (0.04) | 0.000* | 0.65(0.20) 0.79(0.09) | 0.000* | 0.70(0.15) 0.87 (0.06) | 0.000*
0.95(0.10) 1.00 (0.00) | 0.000* | 0.66 (0.19) 0.92(0.06) | 0.000* | 0.78 (0.14) 0.96 (0.03) | 0.000*
\0.93 (0.13) 1.00 (0.00)) 0.000* \0.67 (0.20) 0.89 (0.09)) 0.000* \0.78 (0.16) 0.94 (0.05)) 0.000*
Object-wise instance detection
Precision Recall F1-score
/ 2D 3D \ P-value / 2D 3D \ P-value [ 2D 3D \ P-value
0.68 1.00 - 0.67 1.00 - 0.68 1.00 -
0.83 1.00 - 0.82 1.00 - 0.83 1.00 -
0.68 0.96 0.001* 0.65 0.96 0.003* 0.67 0.96 0.002*
0.97 0.177 0.126 0.141

1.00 /

\ 0.92 1.00 /

\ 0.94 1.00 /




3D data processing

® Deep learning for 3D point clouds
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Deep learning for 3D point clouds

= 2D images contain structure: spatial ordering

e 2D neural networks exploit this structure

" 3D point clouds do not contain this spatial structure

e Point cloud is a set of points

e A different permutation of the points
is still the same point cloud

" 3D point nets need to be permutation
iInvariant
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PointNet

" One of the first deep neural networks for 3D point cloud
classification and segmentation

PointNet

v

7%

x,’?{g table?

car?
Classification Part Segmentation ~ Semantic Segmentation
WAGENINGEN Qi, C.R. et al (2017) PointNet: Deep Learning on Point Sets for 3D Classification
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and Segmentation. CVPR 2017



PointNet: Permutation invariance

Classification Network

nx64

" input points

............................................................................................................................................................................................................

e e s i S L L i s e s

output scores

" Multiplication with affine transformation
® Same neural-network operations for all points
" Max pooling

WAGENINGEN
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Transformation network

shared

nx3

MLP(64), |

shared

MLP(128)

nx64

nx128

shared

MLP(1024)
———"p,

nx1024

trainable weights| |trainable
256x9 biases
l 1x9
max pool | : #
> s_ i % FC, § Y mnfltjrl'tx —>1x9 > (+)> re:s;)l(e;pe
ST-FCN Affine
Input Output

Learning transformation invariance
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PointNet

Classification Network

i mlp (64,64) t:rfeattt_lre mlp (64,1281624)__ max mlp
. ansform pool 1024 12,256.k)
shaed | £ [ [ E | shaea | mxi024| [PH——
H global feature

............................................................................

mlp (128,m)

® Point features
® Global feature

" Combined features
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output scores
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PointNet

Classification Network

input mlp (64,64) feature mlp (64,128,1024) max i
o (e transform pool 1004 /(512,256
S |en N <r
N - E shared E e =" § shared nx1024 I
2 : 2 global feature
E : —
.. e aasaan 3 ................. .‘;.;.‘.;.;.iu._._.._.;._,_‘nf,’..b.d.i.l.l.t, features ..................
{ S
(=]
® 3
n x 1088 Sha'red — Sha d é g
2 &
' g
mlp (512,256,128) mlp (128,

Segmentation Network

" Classification What is this point cloud?

" Semantic segmentation What is every point in the cloud
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Some results
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PointNet++

" PointNet is very flat: point level and global level

PointNet++ creates more levels in a hierarchical structure

skip link concatenation

interpolate

interpolate

pointnet

Classification

sampling &

grouping
N
2\ 4 Y
set abstraction set abstraction
pointnet fully connected layers
WAGENINGEN Qi, C.R. et al (2017) PointNet++: Deep Hierarchical Feature Learning on

UNIVERSITY & RESEARCH

Point Sets in a Metric Space. NIPS 2017
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3D data processing

" 3D deep learning: spatial vs spectral data
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3D segmentation: PointNet++

Stem
} Petiole
f- Leaf

3D + RGBI scan _
‘ - @8 Gr. point

“ /_ @8 Node

g o " '__( @8 Ovary

Tendril

PointNet++

ﬁ

Segment into

@8 Non-plant

Boogaard, F., van Henten, E.J. & Kootstra, G. (2021) Boosting plant-part segmentation from incomplete point clouds of cucumber plants by enriching
the point clouds with spectral data. Biosystems Engineering, 211: 167-182. https://doi.org/10.1016/j.biosystemseng.2021.09.004



3D segmentation: data

" 12 plants, 11 days, 2 sides

@B Gr. point
= " 264 point clouds
—_ -I[leonn({::a nt

= 200,000-700,000 points
" Voxel filter (2x2x2 mm?3)
" Split in blocks of 40,000

" Annotated manually twice
— Ofteal0
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UNIVERSITY & RESEARCH Boogaard, F., van Henten, E.J. & Kootstra, G. (2021) Boosting plant-part segmentation from incomplete point e i
clouds of cucumber plants by enriching the point clouds with spectral data. Biosystems Engineering, 211: 167-182 '(L ' .




3D segmentation: using spectral data

Mean IoU 1
between 0,9
manually 0,8

segmented 0,7
data and 0.6
predictions 305
0,4
0,3
0,2
0,1

lll'

Ovary

Node mmm

Tendril
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M xyz
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Intra-observer variability

1.0
0.9
Presence in dataset:
0.8
e Leaf 83.7% o
N [ ] — 0
Intersection-over- Non-plant 9.5% o
Union (IoU) 5 =
between two © Stem 2.8% |
 Petiole 1.9 % 0.4
manual
annotations _ _ 0.3
« Growing point 0.5%|
0.2
« Node 0.5%
« Ovary 0.5% 0.1
Al O) . Tendril 0.6% 0.0
\ 0o Py =) . o . o v 0 = = o
AR
E-:-""-'{ IAGENINGEN a oy ° 8 =
@ﬂi'zg?l. g



3D segmentation: conclusions

" Spectral data boosts segmentation performance

" Stem, petiole, leaf, growing point and non-plant material can be
segmented well

" Node, ovary and tendril are difficult to segment accurately

" This corresponds with the intra-observer variability

VY @)
pLINGLR
E’- 22t /AGENINGEN
O
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Challenges in 3D plant phenotyping

Class imbalance
Limited training data
Variation

Occlusion
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Challenges in 3D plant phenotyping

® Class imbalance
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Class imbalance has influence on performance

Legend:
0,9 -3 ) [0 Stem (2.7 %)
’ - @ Petiole (1.5 %)
o8 , \ 8 Leaf (78.9 %)
0,7 I ' ) Ll Gr. point (0.7 %)
0,6 @8 Node (0.4 %)
o) ’ @ Ovary (0.3 %)
205 m xyz @ Tendril (0.4 %)
0,4 @B Non-plant (15.0 %)
’ M xyz + RGB
0,3
xyz + RGB + NIR
0,2
" il I
) I
[J] = - V] > = +
§ 5 § £ v § 5 %
s § - & =z & § ¢
o o - c
© =

Boogaard, F., van Henten, E.J. & Kootstra, G. (2021) Improved Point-Cloud Segmentation for Plant Phenotyping Through Class-Dependent
Sampling of Training Data to Battle Class Imbalance. Frontiers in Plant Science, Sec. Technical Advances in Plant Science.




Class-dependent sampling

" Sample points
selected with
inverse relation to
size of the class

" Select the N
closest points to
the sample point
as training sample

WAGENINGEN 49
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Class-dependent sampling

" More balanced training set

100% - 3
90%
- 80% 4 25
8 70% 1 i
o 60%
S o)
¥ 50% 4 15
(@)
c 40%
s 30% 7 4
l(.é (o]
L 20% u
B
0% 0
2 Qb (\6
& & -
’b\\\\ . N ’b?/
@rb (}’bfo (%
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Entropy [bits]

B Stem
M Petiole
M Leaf
Gr. point
H Node
M Ovary
B Tendril
H Non-plant
¢ Entropy

" Improved performance

1.0
0.9
0.8
0.7
06
20,5
0.4
0.3
0.2
0.1
0.0

) Class-independent sampling

'_]“ Sokok

1%

dokok sAokok
m/ m

Ovary
Tendril
Non-plant
1oUnicro
loUmacro

@ Class-dependent sampling
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Results: Internode-length estimation

100
" With 3D points clouds, using spectral
data and dealing with class imbalance, 80
we can estimate the internode length ~
automatically... £ o
= ... also of the curved plants “
§ 40
" Qutperforming 2D plant phenotyping 20
0

Boogaard, F., van Henten, E.J. & Kootstra, G. (in prep) The added value of 3D point clouds for digital
plant phenotyping — a case study on internode length measurements in cucumber.

Fokok
| |
Hokok 3D combined
1 1
+
+
+
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Challenges in 3D plant phenotyping

" Limited training data
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Small datasets

Annotation of 3D point-cloud data is very time consuming
This results in small dataset
Running the risk of

e Overfitting on the training set

e Poor generalization to the test set

Use of data augmentation

e Artificially increasing the variation in the training set

WAGENINGEN
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3D data augmentation: global

" Down-sample " Translation
= Jitter " Cropping
" Scaling " Brightness

" Rotation

Xin, B, Bartholomeus, H. and Kootstra, G. (review) 3D Data-Augmentation Methods for Semantic Segmentation of Tomato Plant Parts. Frontiers in Plant Science.



3D data augmentation:

local

® |eaf translation
" |eaf rotation

® |eaf cross-over

EEEEEEEEEEEEEEEEEEE
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Challenges in 3D plant phenotyping

® \ariation
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Challenge of variation: Different sugarbeet fields

Darknet 53
Backbone

Large-scale object ~Medium-scale object ~ Small-scale object

= Data from 22 different fields
= Different cultivars, soils type, growth stages, ...

Ruigrok, T. van Henten, E. Dirks, J.P.. & Kootstra, G. (2022) Improved generalization of a plant-detection algorithm applied to a

weed-removal robot. Computers and Electronics in Agriculture.



Challenge of variation: Different sugarbeet fields

Average precision for sugarbeet
1.0 T

" Generalization improves when
the training sets contains more
variation (more fields, not :
more data) -

0.2 4 o

0.8

0.6

0.0 T T T T T T
6 8 10 12 14 16 18 20
# Training sets

Average precision for potato

1.0

.. . _________.—-——-—_'_—_——h- = [D):;.{
Training set consists of 02, f —
i i . v
WAGENINGEN 500 images in all cases o ‘

6 8 10 12 14 16 18 20 58
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Effect of the size of the training set

" The performance further improves if more training samples
are used

Average precision for sugarbeet Average precision for potato

1.0 1.0
;_:__,.-—" —
o.s'ﬁ/ 0.8 _——g/'
0.6 0.6 —— =
o N D o Il D1
0.4 N D2 0.4 B D2
Il Q Il Q
0.21 . T 0.2-/ . T
v v
0.0 - ; - . . 0.0 - ; . . .
250 500 1000 2000 4000 8000 250 500 1000 2000 4000 8000
# Training images # Training images
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Weed detection: dealing with variation

Ruigrok, et al. (2020). Application-specific evaluation of a weed-detection algorithm for plant-specific spraying. Sensors, 20




Increasing variation and size of the training set
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Selecting new training data based on uncertainty

Pool of unlabelled images

Train model

7

Initial training data

Blok, P., Kootstra, G., ..., van Henten, E.]. (2022) Active learning with MaskAL reduces annotation effort for training Mask R-CNN.

Computers and Electronics in Agriculture, 197: 106917



Selecting new training data based on uncertainty

Pool of unlabelled images

Train model

I 4

Initial training data

Blok, P., Kootstra, G., ..., van Henten, E.]. (2022) Active learning with MaskAL reduces annotation effort for training Mask R-CNN.

Computers and Electronics in Agriculture, 197: 106917



Selecting new training data based on uncertainty

Pool of unlabelled images

Etc...

Initial training data

Blok, P., Kootstra, G., ..., van Henten, E.J. (2022) Active learning with MaskAL reduces annotation effort for training Mask R-CNN.

Computers and Electronics in Agriculture, 197: 106917



Uncertainty estimation: Monte-Carlo dropout

RolAli
RPN ';m)g“ Box head o

FC

Classes an conﬁ;i?nces
a A
e J-oeasal " NG
ResNeXt-101 \

-DE Box

occoli 100 **

with Fcature
Pyramid 4 conv. layers  Transposed
& Rol (
Network
sl

conv. layer (2x2) Conv. layer
proposals
]

Input (RGB image) (14x14) Mask head

(2) (b) (©) (d) (e)

Figure 4: Examples of the five broccoli classes that were annotated in our data set: (a) healthy (b) damaged
(c) matured (d) cateye (e) headrot. The displayed images were all cropped from a bigger field image
Blok, P., Kootstra, G.,

van Henten, E.]J. (2022) Active learning with MaskAL reduces annotation effort for training Mask R-CNN

Computers and Electronics in Agriculture, 197: 106917



Results

[=))]
wm

random sampling
——— active learning
Mask R-CNN model
trained on the entire

training pool
(14,000 images)
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Challenges in 3D plant phenotyping

® Occlusion
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Multi-view analysis

" We need many viewpoints
to detect all nodes on a
cucumber plant

®" How to find the correct
viewpoints?
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Percentage of nodes detected at least twice (%)

100

80 T
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3 views

B both sides ABC single side
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36 views



Robots need to reason about viewpoints

" Reasoning about seen and unseen space

" Next-best-view planning

CURRENT
TRUE SCENE RECONSTRUCTED SCENE PREDICTED SCENES
100%
Sample 1 65% Reconstructed
25% Information
g u Gain
i 0%
— e
.
~ o 100%
. A 75% Reconstructed
40% - _
R tructed 35% Information
econstructe p
0% -

Burusa, A.K, van Henten, E.J. and Kootstra, G. (review) Attention-driven Active Perception for Efficient Reconstruction of

Plants and Targeted Plant Parts. Computers and Electronics in Agriculture.




Attention mechanism

Y

B
'l;;l'_ e

PLANT MODEL WHOLE PLANT
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Methods
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Results

1.0

F-score @ 0.003m
o
o

©
[\

0.0

predefined
random

—— nbv_whole_plant
—— nbv_main_stem
—— nbv_leaf_nodes

8

1 2 3 4 5 6 7
# of viewpoints

9 10

Task: leaf node reconstruction
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Example

Q0 pisplays [o]
» & Global Options

» v Global Status: Ok
» @® Grid

FlRlREERERERE

| Add

Image (o]

Burusa, A.K, van Henten, E.J. and Kootstra, G. (review) Attention-driven Active Perception for Efficient Reconstruction of
Plants and Targeted Plant Parts. Computers and Electronics in Agriculture.



Conclusion




Conclusion

" Many different 3D acquisition systems exist
" Segmentation and detection of plant parts is better in 3D
" PointNet(++) can learn to segment 3D point clouds

" Adding spectral information to the spatial information improves
segmentation

" The training set needs to of good quality (variation, class imbalance,
data augmentation)

" We need active scanning to deal with occlusions
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Download notebooks

<« - C O B & https://www.wur.nl/en/research-results/research-programmes/research-investment-programmes/digital-twins/conferer B ¥ 3 =
Q Most Visited 5] Getting Started D Other Bookmarks
g WAGENINGEN Education & Research & Value Creation & -
UNIVERSITY & RESEARCH . Search Q
Programmes Results Cooperation
“ Digital Twins > Conference Digital Twins @WUR: Bringing Digital Twins to Life >
Keynote speaker Day 1 : Farid Tabarki, Studio Zeitgeist Read more about Digital Twins-

projects at WUR
+ Keynote speaker Day 2 : Koen Bruynseels, BASF

> Digital Future Farm

> Virtual Tomato Crops

Day 1
> Me My Diet and I
09:00 - 09:30 Registration and walk in .
> Platform Inclusiveness
09:30 - 09:45 Opening by Arthur Mol (rector magnificus / vice-president WUR) > Platform Methodology
09:45 - 09:55 What to expect today
Workshop 3D plant phenotyping
09:55 - 10:30 Coffee break
10:30 - 11:30 Keynote Farid Tabarki > Part 1_point_clouds_and_deep_learning
11:30 - 12:00 Coffee break + visit exposition > Part 2_point_clouds_and_deep_learning
> answers_point_clouds_and_deep_learninc¢
12:00 - 12:45 Deep dive into a Digital Twin 1/2:

Virtual Tomato Crops
Digital Future Farm

Me, My Diet & I
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Google Drive — Google Colaboratory

Colab Notebooks

c‘ CVPPP2016

v [ Education

»

»

Advanced Machine Learning

Deep Learning

Machine Learning

SensingAndPerception

Summerschool Machine Learning in Plant S...
Summerschool Plant Phenotyping

WIAS course Image and Video Analysis
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Q  Search in Drive

My Drive > Education >

Summerschool Machine Learning in Plant Science ~

1 Owner Last modified File size
data me 9:42 AM me .
log me Jul 21,2022 me —
old me 9:42 AM me =
answers_point_clouds_and_deep_learning_part_2.. me Sep 12,2022 me 449 KB
point_clouds_and_deep_learning_part_1.ipynb &%  me Sep 12,2022 me 16 KB
point_clouds_and_deep_learning_part_2.ipynb &%  me Sep 12,2022 me 26 KB
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Two notebooks

& point_clouds_and_deep_learning_part_1.ipynb
File Edit View Insert Runtime Tools Help Last edited on September 12

+ Code + Text

3D plant phynotyping

In previous tutorials, you have seen examples of computer-vision methods to process 2D colored images. In the past years, many powerful

methods became available to get relevant information out of the images. In the field of plant science, these have been applied, for instance, to
detect plants in a field (Ruigrok et al, 2020), to segment individual leaves (Shi et al, 2019), and to detect nodes on a plant (Boogaard et al, 2020).

However, as pointed out in (Boogaard et al, 2020), 2D data
is very limiting if one needs to estimate geometrical
properties, such as lengths and surface areas, as they
need to be estimated from the 2D projection of the 3D
world onto the image. Instead, if 3D point clouds are used,

such measurements can be done much more accurately.

The field of 3D point-cloud processing, especially using
deep neural networks, is not yet as mature as that for 2D

image processing. A lot of progress is expected in the Y
coming years and already now, there are some good |
examples of using 3D point clouds for plant phenotyping, 'l
e.g., (Shi et al, 2019; Golbach et al, 2016; Boogaard et al, %

.
2022).

In this tutorial, you will make some first steps exploring the
use of 3D point-cloud data. e

Learning goals
After successful completetion of this tutorial, you will be able to:

« mention the advantages of 3D imaging data over 2D imaging data,

« describe the concept of several sensor systems to acquire 3D data,

« apply some basic 3D point-cloud processing methods,

« explain the functioning of a 3D neural network conceptually,

« apply PointNet, a 3D neural network, to segment a point cloud of tomato ,seedlings in leaf and stem, and
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Legend:
Stem (2.7 %)
 Petiole (1.5 %)
. Leaf (78.9 %)
Gr. point (0.7 %)
8 Node (0.4 %)
@ Ovary (0.3 %)
0 Tendril (0.4 %)
@8 Non-plant (15.0 %)
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Point clouds and deep learning

In this part of the tutorial, you will learn how to train a deep neural network to learn to segment plants in different plant parts.
After finishing this part of the tutorial, you will be able to:

« explain how training data for 3D semantic segmentation looks like
« use the PointNet deep neural network
« compare the performance of a model trained for only a few epochs to one trained for many epochs

~ 1: Getting started

Run the blocks below to load the required libraries and get the data

[ 1 1 import numpy as np
2 import matplotlib.pyplot as plt
3 import plotly.graph_objects as go
4 from plotly.subplots import make_subplots
5 import plotly.express as px
6 import pandas as pd
7 import os
8 import pickle
9 from pathlib import Path

10 import random

11 import numpy as np

12 import h5py

13

14 # TensorFlow is a library to implement and run neural networks
15 import tensorflow as tf

16 from tensorflow import keras

17 from tensorflow.keras import layers

18
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See in 3D!

gert.kootstra@wur.nl

bolai.xin@wur.nl
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