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§ 10:00-10:40 Intro to 3D plant phenotyping using deep learning

§ 10:40-12:00 Hands-on session 

● Working with point clouds

● Using deep learning to segment a point cloud

Outline of this tutorial
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§ Introduction to 3D plant phenotyping

§ 3D data acquisition

§ Data processing

§ Challenges

§ Conclusion

Outline of the introduction
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§ Objectives

§ Why 3D?

Introduction to 3D plant phenotyping
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§ Plant development 
is a result of the 
interaction of the 
genotype (DNA) 
and the 
environment

§ G + E = P

Plant development
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Environment Genotype

Phenotype



§ In controlled environments 
(greenhouses), we have a 
lot of knowledge about the 
environment

§ Genetic information can be 
gather efficiently with next-
generation-genotyping tools

§ But the phenotype at plant 
level is still mainly 
measured by hand

Level of automation
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§ Automatic assessment of plant traits

§ Better quality of measurements

● Objective measurements

§ Better quantity of measurements

● Moreplants

Digital plant phenotyping
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§ Why 3D?

Introduction to 3D plant phenotyping
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§ Internode length and development

● Of interest for breeders

● Light interception

● Density of the crop

● Breeding for robotics

Why 3D? A motivating 2D example

Boogaard, F. P., Rongen, K. S., & Kootstra, G. (2020). Robust node detection and tracking in fruit-vegetable crops using deep learning and multi-view imaging. 
Biosystems Engineering,192, 117–132. https://doi.org/10.1016/j.biosystemseng.2020.01.023 



A robotic multi-view camera setup



A robotic multi-view camera setup



§ We used the YOLOv3 
neural network for 
object detection

§ Image with in total 
10.314 nodes visible

§ 4-folds Cross validation 
with 75-25% split

Node detection using deep learning
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§ Detection of nodes using
YOLOv3

Step 1: node detection

TP

FP

FN

Detection True node



Step 2: multi-view node clustering

Affinity propagation clustering (Frey & Dueck, 2007)



Step 3: Internode-length estimation results

§ Error of estimations are generally 
in range of [-10mm, 10mm]

§ This is not as accurate as 
accurate human measurements

§ But more accurate than rough 
manual estimation

§ But…

§ … estimation are quite off for 
non-vertically growing plants

§ We need 3D plant phenotyping



Pipeline from 3D imaging data to a digital twin
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§ Different sensors and sensing technologies

§ Multi-view approaches

3D data acquisition
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§ Shape from silhouette

§ Laser triangulation

§ Structure from Motion and Multi-View Stereo

§ Terrestial laser scanners

Different 3D sensors
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Shape from silhouette: MARVIN
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Shape from silhouette

analysis of
plant



Laser triangulation
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§ PlantEye F500 of Phenospex
§ High-resolution RGBI point cloud
§ Partially complete point cloud



Structure from motion and multi-view stereo
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Structure from motion and multi-view stereo
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§ Multi-view 2D deep learning

§ 3D deep learning: spatial vs spectral data

3D data processing
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§ Multi-view 2D deep learning

3D data processing
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A multi-view deep-learning approach

Shi, W., van de Zedde, R., Jiang, H., & Kootstra, G. (2019). Plant-part segmentation using deep learning and multi-view vision. Biosystems Engineering,187, 81–95 



§ Mask R-CNN

Instance segmentation

Ren et al. (2017)



Multi-view voting

Shi, W., van de Zedde, R., Jiang, H., & Kootstra, G. (2019). Plant-part segmentation usingdeep learning and multi-view vision.Biosystems Engineering,187, 81–95 



Results instance segmentation



Results instance segmentation



§ Deep learning for 3D point clouds

3D data processing
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§ 2D images contain structure: spatial ordering 

● 2D neural networks exploit this structure

§ 3D point clouds do not contain this spatial structure

● Point cloud is a set of points

● A different permutation of the points 
is still the same point cloud

§ 3D point nets need to be permutation 
invariant

Deep learning for 3D point clouds
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§ One of the first deep neural networks for 3D point cloud 
classification and segmentation

PointNet
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Qi, C.R. et al (2017) PointNet: Deep Learning on Point Sets for 3D Classification 

and Segmentation. CVPR 2017



§ Multiplication with affine transformation

§ Same neural-network operations for all points

§ Max pooling

PointNet: Permutation invariance
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§ Learning transformation invariance 

Transformation network
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§ Point features

§ Global feature

§ Combined features

PointNet
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§ Classification What is this point cloud?

§ Semantic segmentation What is every point in the cloud

PointNet
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Some results
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§ PointNet is very flat: point level and global level

§ PointNet++ creates more levels in a hierarchical structure

PointNet++
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Qi, C.R. et al (2017) PointNet++: Deep Hierarchical Feature Learning on 

Point Sets in a Metric Space. NIPS 2017



§ 3D deep learning: spatial vs spectral data

3D data processing

40



3D segmentation: PointNet++

PointNet++

Segment into

Boogaard, F., van Henten, E.J. & Kootstra, G. (2021) Boosting plant-part segmentation from incomplete point clouds of cucumber plants by enriching 
the point clouds with spectral data. Biosystems Engineering, 211: 167-182. https://doi.org/10.1016/j.biosystemseng.2021.09.004

3D + RGBI scan



3D segmentation: data

§ 12 plants, 11 days, 2 sides

§ 264 point clouds

§ 200,000-700,000 points

§ Voxel filter (2x2x2 mm3)

§ Split in blocks of 40,000

§ Annotated manually twice

42Boogaard, F., van Henten, E.J. & Kootstra, G. (2021) Boosting plant-part segmentation from incomplete point 
clouds of cucumber plants by enriching the point clouds with spectral data. Biosystems Engineering, 211: 167-182



Mean IoU 
between
manually
segmented
data and
predictions

3D segmentation: using spectral data



Intra-observer variability

Intersection-over-
Union (IoU) 
between two
manual 
annotations

• Leaf 83.7%
• Non-plant 9.5%

• Stem 2.8%
• Petiole 1.9 %

• Growing point 0.5%
• Node 0.5%
• Ovary 0.5%
• Tendril 0.6%

Presence in dataset:



§ Spectral data boosts segmentation performance

§ Stem, petiole, leaf, growing point and non-plant material can be 
segmented well

§ Node, ovary and tendril are difficult to segment accurately

§ This corresponds with the intra-observer variability

3D segmentation: conclusions
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§ Class imbalance

§ Limited training data

§ Variation

§ Occlusion

Challenges in 3D plant phenotyping
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§ Class imbalance

Challenges in 3D plant phenotyping
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Class imbalance has influence on performance

Boogaard, F., van Henten, E.J. & Kootstra, G. (2021) Improved Point-Cloud Segmentation for Plant Phenotyping Through Class-Dependent 
Sampling of Training Data to Battle Class Imbalance. Frontiers in Plant Science, Sec. Technical Advances in Plant Science. 



§ Sample points 
selected with 
inverse relation to 
size of the class

§ Select the N 
closest points to 
the sample point 
as training sample

Class-dependent sampling 
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Class-dependent sampling 

§ More balanced training set § Improved performance
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§ With 3D points clouds, using spectral 
data and dealing with class imbalance, 
we can estimate the internode length 
automatically…

§ … also of the curved plants

§ Outperforming 2D plant phenotyping

Results: Internode-length estimation

51Boogaard, F., van Henten, E.J. & Kootstra, G. (in prep) The added value of 3D point clouds for digital 
plant phenotyping – a case study on internode length measurements in cucumber.



§ Limited training data

Challenges in 3D plant phenotyping
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§ Annotation of 3D point-cloud data is very time consuming

§ This results in small dataset

§ Running the risk of 

● Overfitting on the training set

● Poor generalization to the test set

§ Use of data augmentation

● Artificially increasing the variation in the training set

Small datasets
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3D data augmentation: global

§ Down-sample

§ Jitter

§ Scaling

§ Rotation

§ Translation

§ Cropping

§ Brightness

54
Xin, B, Bartholomeus, H. and Kootstra, G. (review) 3D Data-Augmentation Methods for Semantic Segmentation of Tomato Plant Parts. Frontiers in Plant Science.



§ Leaf translation

§ Leaf rotation

§ Leaf cross-over

3D data augmentation: local
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§ Variation

Challenges in 3D plant phenotyping
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Challenge of variation: Different sugarbeet fields
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§ Data from 22 different fields
§ Different cultivars, soils type, growth stages, …

Ruigrok, T. van Henten, E. Dirks, J.P.. & Kootstra, G. (2022) Improved generalization of a plant-detection algorithm applied to a 

weed-removal robot. Computers and Electronics in Agriculture.
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Challenge of variation: Different sugarbeet fields
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§ Generalization improves when 
the training sets contains more 
variation (more fields, not 
more data)

Average precision for sugarbeet

Average precision for potato

Training set consists of 
500 images in all cases



§ The performance further improves if more training samples 
are used

Effect of the size of the training set
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Average precision for sugarbeet Average precision for potato



Weed detection: dealing with variation

Ruigrok, et al. (2020). Application-specific evaluation of a weed-detection algorithm for plant-specific spraying. Sensors, 20



Increasing variation and size of the training set
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How to select training data? 
Active learning



Selecting new training data based on uncertainty
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Initial training data

AL 1

Pool of unlabelled images

Train model

Blok, P., Kootstra, G., …, van Henten, E.J. (2022) Active learning with MaskAL reduces annotation effort for training Mask R-CNN. 

Computers and Electronics in Agriculture, 197: 106917



Selecting new training data based on uncertainty
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Initial training data AL 1

Pool of unlabelled images

Train model
AL 2

Blok, P., Kootstra, G., …, van Henten, E.J. (2022) Active learning with MaskAL reduces annotation effort for training Mask R-CNN. 

Computers and Electronics in Agriculture, 197: 106917



Selecting new training data based on uncertainty
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Initial training data AL 1

Pool of unlabelled images

AL 2

Etc…

Blok, P., Kootstra, G., …, van Henten, E.J. (2022) Active learning with MaskAL reduces annotation effort for training Mask R-CNN. 

Computers and Electronics in Agriculture, 197: 106917



Uncertainty estimation: Monte-Carlo dropout 

66Blok, P., Kootstra, G., …, van Henten, E.J. (2022) Active learning with MaskAL reduces annotation effort for training Mask R-CNN. 

Computers and Electronics in Agriculture, 197: 106917



Results
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§ Occlusion

Challenges in 3D plant phenotyping

68



§ We need many viewpoints 
to detect all nodes on a 
cucumber plant

§ How to find the correct 
viewpoints?

Multi-view analysis

3 views 36 views



§ Reasoning about seen and unseen space

§ Next-best-view planning

Robots need to reason about viewpoints

70Burusa, A.K, van Henten, E.J. and Kootstra, G. (review) Attention-driven Active Perception for Efficient Reconstruction of 
Plants and Targeted Plant Parts. Computers and Electronics in Agriculture.



Attention mechanism
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Methods
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Results
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Task: leaf node reconstruction



Example

74Burusa, A.K, van Henten, E.J. and Kootstra, G. (review) Attention-driven Active Perception for Efficient Reconstruction of 
Plants and Targeted Plant Parts. Computers and Electronics in Agriculture.



Conclusion
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§ Many different 3D acquisition systems exist 

§ Segmentation and detection of plant parts is better in 3D

§ PointNet(++) can learn to segment 3D point clouds

§ Adding spectral information to the spatial information improves 
segmentation

§ The training set needs to of good quality (variation, class imbalance, 
data augmentation)

§ We need active scanning to deal with occlusions

Conclusion
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77

Hands-on tutorial



Download notebooks
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Google Drive – Google Colaboratory
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Two notebooks
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See in 3D!

gert.kootstra@wur.nl

bolai.xin@wur.nl
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