

Guidelines for calculating food supply GHG emissions with the ACE calculator

Version: 12 May 2021

Author: Jan Broeze, Wageningen Food & Biobased Research.

Contents

1	Int	roduction	3
2	Ca	Iculator details	4
3	Ca	Iculator worksheets format	7
4	Ins	structions for use of the calculator	8
	4.1	Scenario comparison	8
	4.2	Selecting geographic location and crop	9
	4.3	Selecting complete sets of loss and emission factors along the chain	9
	4.4	Selecting an entry for crop GHG intensity	10
	4.5	Inserting chain configuration data and optionally overrule default parameter values	11
	4.6	Results	11
5	Re	ferences	13

This work was implemented as part of the Consultative Group on International Agricultural Research (CGIAR) Research Program on Climate Change, Agriculture and Food Security (CCAFS), which is carried out with support from CGIAR Fund Donors and through bilateral funding agreements. For more information, please visit <u>https://ccafs.cgiar.org/donors</u>.

DISCLAIMER:

The developer of this tool checked correctness through comparison with other calculations. However, since the secondary offered in this tool are based on averages the results cannot be expected to exactly predict the GHG emissions and food losses in a specific practical situation.

For further information and recommendations please contact jan.broeze@wur.nl

1 Introduction

The Agro-Chain greenhouse gas Emissions (ACE) calculator is a tool for estimating total greenhouse gas (GHG) emissions associated to a food product. It addresses the most common stages of 'linear' agro-food chains (chains for fresh and simple processed products, including canned, frozen, packaged and other minimal processed forms; the current version cannot cope with fractionation processes). The tool combines a calculation framework with datasets containing crops GHG intensities and Food Loss factors along the chain. Combined with user-definition parameters for the product-chain considered it generates an estimate for GHG emissions associated to a product when bought by a consumer. The default data that the calculator derives from the dataset may be overruled by the user if more specific data are available; this will make the calculations more case specific.

2 Calculator details

The method can be used at relatively little effort. Based on a chain flow diagram (that includes region of production, transport modalities and distances, duration of refrigered and frozen storage, packaging material use and energy use) a spread-sheet can be filled, resulting in estimate of total impact per unit product bought by the consumer.

Table 1. Scope and factors addresse	
Chain stage On-farm	 Factors addressed crop ghg intensity losses in harvesting, on-field and on-farm post-harvest operations. fuels use in these operations on-farm refrigerated storage (inducing electricity use) on-farm other electricity use
Transport	transportation distancetransportation modality
Processing and packaging	 losses at this stage (including losses in transport, which are mostly detected at this chain stage) losses waste management method refrigerated storage other electicity use fuel use other energy use packaging material use (plastics, steel, paper, etc.)
Transport (up to three transportation steps can be chosen here, for instance for intercontinental transport: large truck – cargo sea ship – large truck)	 transportation distances transportation modalities optional refrigeration
Processing/repackaging/distribution activities	(same as in <i>processing and packaging</i>)
Distribution transport	 transportation distance transportation modality optional refrigeration
Market/Retail outlet	 food waste waste management refrigerated storage other electicity use fuel use other energy use

Table 1. Scope and factors addressed by the calculator

Some parameter values (like transportation distances and packaging material use) will be situationspecific, and should be filled in by the user (if different from 0). For all other parameter values can be derived from data sets in the calculator.

Data set	Description
Crop GHG	Default values for crop GHG intensities, differentiated at global region and country
intensities	level, derived from review literature and FAO Crop Emission Intensities. These default
	values are differentiated to global region and crop category.
Production chain	Default values for loss and emission factors in Agricultural production and Processing
dataset	and packaging chain stages; differentiated to global region and crop category.
	Per crop and global regin one option (with typical loss and emission factors per chain stage) or multiple options (for different technology options) are available.
Distribution chain	Default values for loss and emission factors in Processing/repackaging/distribution
dataset	and Market/retail outlet chain stages; differentiated to global region and crop category.
	For many crop category and global region one data record is predefined (with typical
	loss and emission factors per chain stage), for some multiple entries are listed (for different technology options).
Unit-operations-	For a number of crops (current version limited to rice; will be extended) specific default
specific dataset	loss factors and fuel/electricity use for unit-operations (like manual harvesting,
	mechanized harvesting, traditional threshing, etc.) are given. The values were derived
	from literature.
	When selecting a specific unit-operation, default values for that chain stage are
	overwritten in the scenario study.
Transport	Contains ypical GHG emission factors for various transportation modalities, including
modalities	non-motorized transport, delivery van, various sizes trucks, electric and diesel cargo
	trains, inland cargo ships, sea cargo ships, sea container ships and continental and intercontinental air cargo.
	Values in line with Ecolovent 3 and ecotransit.org (visited December 2018).
Material and fuel	Emissions associated to various packaging materials and fuel ("well-to-wheel").
emission factors	
Electricity	Country-specific GHG emission factors for electricity (related to the national electricity
emission factors	mix).
Residue	Default emission factors for management of losses (including neglecting emissions
management	due to losses).
options	

Table 2. Data sets in the ACE calculator

The calculator distinguishes 4 levels of data entry:

- 1. The highest aggregation level contains high-over/average values for crop GHG intensity and loss factors and fuel use along the chain. With only these data fields selected, a full calculation can be done (default no electricity and packaging material use and no transport). Entries are specific for
 - o global regions and countries of production and distribution
 - o crop type

When only using this data level, typical average losses and associated GHG emissions in country or region situation are obtained.

2. Per chain stage the user may select a different record (loss factors, fuel use, electricity use, packaging material use, etc.) that is considered more representaive or valid for a specific technology option.

This data level enables the comparison of typical situations (like comparing manual product handling and mechanized operations).

3. Within a chain stage the user can select individual technology options for unit operations (with loss factors, fuel use, etc., mostly derived from dedicated technology studies).

4. Any lookup value can be overwritten by a user-defined value.

Through this option chain configurations and technology options with lacking or inadequate data can be defined.

In a scenario study, choosing a dataset at the highest level (level 1) is obligatory; through this choice values are predefined for each parameter in the calculator. Upon selecting a data entry from any of

the other data levels, the concering subset of parameter values are replaced by those (more specific) values.

More background information can be found in Broeze et al. (2019).

3 Calculator worksheets format

The calculator is implemented in Excel, with a set of work sheets:

- Instructions (instructions per field);
- ACE Calculator (this is the actual calculator user-interface);
- GHGI_XXX (contains crop GHG intensity factors for region XXX¹);
- LossFXXX (contains loss factors and some other emission factors for region XXX);
- TransportModalities (contains emission factors for transportation modalities);
- ResiduesManagmOptions (contains emissions factors for residues management options).

The data sheets for crops are open for editing; when available the user may add a crop with more specific data to enrich his working set.

Also the last two datasheets are user-amendable, for instance for correcting the data to countryspecific best-known values or by adding alternative technology options.

- Europe
- Industrialised Asia
- Latin America
- North Africa, West & Central Asia
- North America & Oceania
- South & South-East Asia
- Sub-Saharan Africa

¹ We distinguish region groups based on FAO definitions:

4 Instructions for use of the calculator

ACE calculator	Jan Broeze	has ad Dessarah		ENINGEN		on (O	
Agro-Chain greenhouse gases Emissions Calculator	Wageningen Food & Bio Version 12 May 2021		UNIVERSI	TY & RESEARCH	CGIAR Food Security	nd	
Case/scenario title:	Scenario 1: traditiona	l handling		Scenario 2: mechanized			
Marketed food product CLIMATE IMPACT	8.49 kg CO2-EQ. per k	g sold on market		6.07 kg CO2-EQ. per kg	sold on market		
FOOD LOSS (lost edible part)	34.84%			8.81%			
FOOD LOSS ASSOCIATED GHG EMISSIONS	2.96 kg CO2-EQ. per kg sold on market			0.53 kg CO2-EQ. per kg sold on market			
Moisture and residues loss	30.75%			30.75%			
Case formulation: product and geographic scope;	selection of underlying	datasets					
Geographical region (production)	SubSaharanAfrica			SubSaharanAfrica			
Specific country / Electr. GHG emission factor	Nigeria		0.55	Nigeria		0.55	
Geographical region (distribution)	SubSaharanAfrica			SubSaharanAfrica			
Specific country / Electr. GHG emission factor	Nigeria		0.55	Nigeria		0.55	
Crop category	Rice			Rice			
Production chain data set (loss factors, etc.)	rice: traditional syste	m			industrial storage and	milling	
Distribution chain data set (loss factors, etc.)	rice: traditional syste			rice: traditional system			
Harvesting and on-field post-harvest operations	(antionally, coloct who	n different from default)					
	(optionally: select whe	n different from default)					
(On-farm) Transport							
Postharvest handling and storage (on-farm)							
Transport							
Processing and Packaging							
(Possibly international) Transport							
Processing/repackaging/distribution							
Distribution transport							
Market/Retail shop							
Summary of climate impacts results							
Overview of climate impacts per chain stage	Direct emissions	FLW-associated	Total	Direct emissions	FLW-associated	Total	
Harvesting and on-field post-harvest operations	3.830	0.426		3.830	0.118		
(On-farm) Transport	0.000			0.000			
Postharvest handling and storage (on-farm)	0.000	0.411		0.000	0.016		
Transport	0.000			0.000			
Processing and Packaging	0.000	1.095		0.000	0.152		
(Possibly international) Transport	0.000			0.000			
Processing/repackaging/distribution	0.000	0.058		0.000	0.042		
Distribution transport	0.000	0.050		0.000	0.042		
Market/Retail shop	0.000	0.059		0.000	0.042		
•			8.488			6.066	
TOTAL (incl. correction for moisture and residues lo	s: 5.531	2.957	8.488	5.531	0.535	6.066	

Figure 1. ACE Calculator user-interface (all rows with fill-in fields collapsed).

4.1 Scenario comparison

Two scenarios can be compared in the user-interface (arranged in 2 columns). Differences between the scenario configurations are highlighted through colouring of the cells concerned for the second scenario (that is: the right column)

- ·					
Crop category	Rice		Rice		
Production chain data set (loss factors, etc.)	rice: traditional syst	itional system		rice: combine harvest, industrial storage and milling	
Distribution chain data set (loss factors, etc.)	rice: traditional syst	em	rice: traditional syste	em	
• •					
Harvesting and on-field post-harvest operations (optionally: select whe	en different from default)			
Optionally: select specific crop GHG intensity	Rice Eastern Africa, I	east developed countries, without defore	Rice Eastern Africa, I	east developed countries, without defore	
(Comment)					
Crop GHG intensity (kg CO2-eq per kg crop)		3.83		3.83	
Optionally derive crop GHG intensity from product	ion global warming po	otential (per hectare) and crop yield:			
Production global warming potential (kg CO2-eq.	/ha)	0		0	
Crop yield (kg/ha)		0		0	
Apply either typical loss factor and total on-farm p	ost-harvest GHG induc	cing emissions:			
Select data set for on-field operations					
Moisture and residues loss		4.88%		4.88%	
Food loss		10.00%		3.00%	
Harvesting and postharvest on-field Fuel use (lite	er per kg product)	0		0	
or select specific operations (expand rows)	Include process for:	1 Hanvest 2 Field drying (optional default	+ 22 ->18% moisture)	Hauling A Threshing/winnowing	

Figure 2. Differences between both scenarios are automatically highlighted through colours of cells.

All below instructions apply to both scenario columns.

4.2 Selecting geographic location and crop

Since GHG emission factors and loss factors largely differ amongst global regions, the first step must be choice a region of production, a region of consumption and a crop.

Because GHG emission factors vary amongst countries (related to the energy mix), also the country must be selected here.

ACE calculator Agro-Chain greenhouse gases Emissions Calculator	Jan Broeze Wageningen Food & Biobased Research Version 12 May 2021
Case/scenario tit	le: Scenario 1: traditional handling
Marketed food product CLIMATE IMPACT FOOD LOSS (lost edible part) FOOD LOSS ASSOCIATED GHG EMISSIONS	8.49 kg CO2-EQ. per kg sold on market 34.84% 2.96 kg CO2-EQ. per kg sold on market
Moisture and residues loss	30.75%
Case formulation: product and geographic sco	ppe; selection of underlying datasets
Geographical region (production) Specific country / Electr. GHG emission factor Geographical region (distribution) Specific country / Electr. GHG emission factor Crop category Production chain data set (loss factors, etc.) Distribution chain data set (loss factors, etc.)	SubSaharanAfrica Europe IndustrializedAsia LatinAmerica NorthAfricaWestCentralAsia NorthAmericaOceania SouthSouthEastAsia SubSaharanAfrica rice: traditional system

4.3 Selecting complete sets of loss and emission factors along the chain

At the highest aggregation level high-over/average/typical data sets for all parameters in the scenario are chosen (optionally different sets for the production and distribution phase, because these may be in different regions).

ACE calculator Agro-Chain greenhouse gases Emissions Calculator		Jan Broeze Wageningen Food & Bio Version 12 May 2021	obased Research	
Case/scenario title:		Scenario 1: tradition	al handling	:
Marketed food product CLIMATE IMPACT		8.11 kg CO2-EQ. per	kg sold on market	6
FOOD LOSS (lost edible part)		34.84%		4
FOOD LOSS ASSOCIATED GHG EMISSIONS		2.83 kg CO2-EQ. per	kg sold on market	l l
Moisture and residues loss		30.75%		
Case formulation: product and geographic scope	; se	election of underlying	datasets	
Geographical region (production)		SubSaharanAfrica		5
Specific country / Electr. GHG emission factor		Nigeria		0.55
Geographical region (distribution)		SubSaharanAfrica		
Specific country / Electr. GHG emission factor		Nigeria		0.55
Crop category		Rice		
Production chain data set (loss factors, etc.)		rice: traditional system	m	- I
rice rice rice rice rice rice rice rice	ice: product typical values (Porter et al., 2016) ice typical loss values from aphlis.net; processing losses from Porter et al (2016) ice: traditional system			^ -
Harvesting and on-field post-harvest operatic optionally: select specific crop GHG intensity	aditional farming and storag echanization in farming, trad aditional farming, industrial s ombine harvest, industrial sto	litional milling storage and milling		
Crop GHG intensity (kg CO2-eq per kg crop)				3.66

Figure 3. Selecting a level-1 data set for the production chain.

4.4 Selecting an entry for crop GHG intensity

ACE calculator Agro-Chain greenhouse gases Emissions Calculator	Jan Broeze Wageningen Food & Biobased Research Version 12 May 2021	G E		
Case/scenario title:	Scenario 1: traditional handling			
Marketed food product CLIMATE IMPACT	8.11 kg CO2-EQ. per kg sold on market			
FOOD LOSS (lost edible part)	34.84%			
FOOD LOSS ASSOCIATED GHG EMISSIONS	2.83 kg CO2-EQ. per kg sold on market			
Moisture and residues loss	30.75%			
Case formulation: product and geographic scope; s	election of underlying datasets			
Geographical region (production)	SubSaharan Africa			
Specific country / Electr. GHG emission factor	Nigeria 0.5	5		
Geographical region (distribution)	SubSaharanAfrica			
Specific country / Electr. GHG emission factor	Nigeria 0.5	5		
Crop category	Rice			
Production chain data set (loss factors, etc.)	rice: traditional system			
Distribution chain data set (loss factors, etc.)	rice: traditional system			
Harvesting and on-field post-harvest operations	optionally: select when different from default)			
Optionally: select specific crop GHG intensity		-		
	/estern Africa, developing countries, without deforestration (Nemecek et al., 2011)	~		
	/estern Africa, developing countries, including deforestration (Nemecek et al., 201 /estern Africa, least developed countries, without deforestration (Nemecek et al., 2			
	/estern Africa, least developed countries, including deforestration (Nemecek et al., gola for Rice (paddy-equiv.) (FAO, Crop Emissions Intensities, 2019)			
	in for Rice (paddy-equiv.) (FAO, Crop Emissions Intensities, 2019)			
	kina Faso for Rice (paddy-equiv.) (FAO, Crop Emissions Intensities, 2019)	\checkmark		
Apply either typical loss factor and total on-farm po	undi for Rice (paddy-equiv.) (FAO, Crop Emissions Intensities, 2019) t-harvest GHG inducing emissions:			

Figure 4. The user may select another GHG intensity factor than the 'default' (default values are derived from Porter et al, 2016).

4.5 Inserting chain configuration data and optionally overrule default parameter values

Subsequently the user can select specific datasets per chain stage (Figure 5) and even overrule individual values (Figure 6).

Processing and Packaging			
Specifiy packaging material use. Loss factor	and processing GHG inducing emissions may either be aggregated		
Select data set for losses		-	
Moisture and residues loss	rice: product typical values (Porter et al., 2016)	~	
Food loss	rice typical loss values from aphlis.net; processing losses from Porter et al (2016) rice: traditional system		
Losses waste management	rice: traditional farming and storage, industrial milling		
Packaging steel (kg/kg product)	rice: mechanization in farming, traditional milling rice: traditional farming, industrial storage and milling		
Packaging aluminium (kg/kg product)	rice: combine harvest, industrial storage and milling	\sim	
Packaging paper and board (kg/kg product	t)	0	

Figure 5. Selecting a specific level-2 data set for the chain stage (when different values apply at this chain stage than in the level-1 data set chosen).

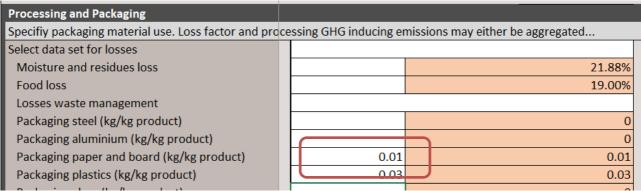


Figure 6. Values adopted from a dataset can be overruled by filing in a value in the white field.

4.6 Results

The results (cumulative climate impact per kg product sold on the market, total losses and total lossassociated GHG emissions) are summarized in the top rows of the calculator (Figure 7). Details per chain stage are presented at the bottom of the calculator (Figure 8).

ACE calculator Agro-Chain greenhouse gases Emissions Calculator	Jan Broeze Wageningen Food & Biobased Research Version 12 May 2021		CGIAR A CALL CLARKS	
Case/scenario title:	Scenario 1: traditional handling	Scenario 2: mechanize	ed	
Marketed food product CLIMATE IMPACT	8.27 kg CO2-EQ. per kg sold on market	6.07 kg CO2-EQ. per kg	y sold on market	
FOOD LOSS (lost edible part)	34.84%	8.81%		
FOOD LOSS ASSOCIATED GHG EMISSIONS	2.86 kg CO2-EQ. per kg sold on market	0.53 kg CO2-EQ. per kg	0.53 kg CO2-EQ. per kg sold on market	
Moisture and residues loss	30.75%	30.75%	30.75%	

Figure 7. Summary of scenario results

ACE calculator Agro-Chain greenhouse gases Emissions Calculator	Jan Broeze Wageningen Food & Biob Version 12 May 2021	ased Research		ENINGEN TY & RESEARCH	CGIAR Food Security	e, ()	
Case/scenario title:	Scenario 1: traditional handling			Scenario 2: mechanized			
Marketed food product CLIMATE IMPACT FOOD LOSS (lost edible part) FOOD LOSS ASSOCIATED GHG EMISSIONS Moisture and residues loss	8.27 kg CO2-EQ. per kg sold on market 34.84% 2.86 kg CO2-EQ. per kg sold on market 30.75%			6.07 kg CO2-EQ. per kg sold on market 8.81% 0.53 kg CO2-EQ. per kg sold on market 30.75%			
Summary of climate impacts results							
Overview of climate impacts per chain stage	Direct emissions	FLW-associated	Total	Direct emissions	FLW-associated	Total	
Harvesting and on-field post-harvest operations	3.661	0.407		3.830	0.118		
(On-farm) Transport	0.000			0.000			
Postharvest handling and storage (on-farm)	0.000	0.393		0.000	0.016		
Transport	0.000			0.000			
Processing and Packaging	0.084	1.066		0.000	0.152		
(Possibly international) Transport	0.000			0.000			
Processing/repackaging/distribution	0.000	0.057		0.000	0.042		
Distribution transport	0.000			0.000			
Market/Retail shop	0.000	0.057		0.000	0.042		
TOTAL (incl. correction for moisture and residues lo	s) 5.409	2.858	8.267	5.531	0.535	6.066	

Figure 8. Details of climate impacts per chain stage are given at the bottom of the calculator.

5 References

APEAL (2012) Life cycle assessment on tinplate (leaflet).

Association (2018) World Steel Association, Life cycle inventory study.

- Broeze, J. X. Guo, H. Axmann & M. Vollebregt (2019): A systemic approach for trade-off analysis of food loss reduction and greenhouse gas emissions, CCAFS Working Paper.
- EPA (2016) Documentation for Greenhouse Gas Emission and Energy Factors Used in the Waste Reduction Model (WARM). Background Chapters, Report. Prepared by ICF International for the U.S. Environmental Protection Agency,
- Evans J et al. (2014) Specific energy consumption values for various refrigerated food cold stores Energ Buildings 74:141–151
- Garofalo P, L. D'Andrea, M. Tomaiuolo, Venezia A, Castrignanò A (2017) Environmental sustainability of agri-food supply chains in Italy: The case of the whole-peeled tomato production under life cycle assessment methodology J Food Eng 200:1-12
- Hekkert MP, D.J. Gielen, Worrell E, Turkenburg WC (2001) Wrapping up greenhouse gas emissions: An assessment of GHG emission reduction related to efficient packaging use J Ind Ecol 5:55-75
- IMO (2015) Third IMO Greenhouse Gas Study 2014: Safe, secure and efficient shipping on clean oceans
- Laurijssen J, M. Marsidi, A. Westenbroek, Worrell E, Faaij A (2010) Paper and biomass for energy? The impact of paper recycling on energy and CO2 emissions Resour Conserv Recy 54:1208– 1218
- Porter SD, D.S. Reay, P. Higgins, Bomberg E (2016) A half-century of production-phase greenhouse gas emissions from food loss & waste in the global food supply chain Sci Total Environ 571:721-729
- Schmitz A, J. Kaminski, Scalet BM, Soria A (2011) Energy consumption and CO2 emissions of the European glass industry Energ Policy 39:142–155
- Simon B, Amor MB, Földényi R (2016) Life cycle impact assessment of beverage packaging systems: focus on the collection of post-consumer bottles J Clean Prod 112:238-248
- Stotz PM, M. Niero, Bey N, Paraskevas D (2017) Environmental screening of novel technologies to increase material circularity: A case study on aluminium cans Resour Conserv Recy 127:96–106