

EURL-MP-method_008 (version 1) Determination of citrinin in red yeast rice food supplements by LC-MS/MS

Analyte group:	mycotoxins
Analyte(s):	citrinin
Commodity group:	food supplements
Commodities validated:	red yeast rice food supplements
Technique:	Liquid chromatography / tandem mass spectrometry (LC-MS/MS)

Modifications compared to previous version:

Not applicable

Method drafted by:

EU Reference Laboratory for mycotoxins & plant toxins in food and feed (EURLMP) Wageningen food Safety research (WFSR), part of Wageningen University & Research Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands <u>eurl.mycotoxins-planttoxins@wur.nl</u>

Notices:

This method has been drafted as guidance for EU National Reference Laboratories on mycotoxins and plant toxins in food and feed. It has been produced with the utmost care. However, WFSR does not accept liability for any claims based on the contents of this document.

Any reference to specific manufacturers' products is mentioned only for the convenience of users. They do not constitute an endorsement by the EURL and do not imply exclusion of similar alternatives.

The use of this document can involve hazardous materials, operations and equipment. This document does not address safety issues associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

© 2021 Wageningen Food Safety Research, Wageningen University & Research, institute within the legal entity Wageningen Research Foundation. Reproduction is authorised provided the source is acknowledged.

Suggested Citation: EURLMP-method_008 v1, 2021, Determination of citrinin in red yeast rice food supplements by LC-MS/MS, EURL mycotoxins and plant toxins, WFSR Wageningen University & Research.

|--|

Table of contents

1	Intro	duction	3
2	Scon	e	3
3	Prin	ciple	3
4	Reag	rents	3
	4.1	Analytical standards	3
	4.2	Chemicals	3
	4.3	Solutions and reagents	4
	4.4	Standard solutions	4
5	Mate	rials & equipment	6
	5.1	Materials	6
	5.2	Equipment	6
6	Proc	edures	7
	6.1	Quality control	7
	6.2	Pre-treatment	7
	6.3	Trial unit	7
	6.4	Extraction, clean-up and preparation of test solutions	7
7	LC-M	IS/MS analysis	8
	7.1	Injection sequence	9
8	Eval	uation and calculations	9
	8.1	Verification of linearity of LC-MS/MS measurement	9
	8.2	Identification of citrinin in the samples	9
	8.3	Quantification of citrinin in the samples	10
	8.4	Final result	11
9	Refe	rences	11
Ann	ex A.1	Checklist for sample preparation red yeast rice food supplements applying internal	
		standard	12
Ann	ex A.2	Checklist for sample preparation red yeast rice food supplements applying single level	
		standard addition	14
Ann	ex B	Example of LC-MS/MS conditions	16
	B.1	LC conditions	16
	B.2	MS conditions	16
	B.3	LC-MS/MS example chromatogram of a red yeast rice food supplement cellulose capsule/gel	
	capsı	ıle fortified at 100 μg/kg	18

EURL-MP-method_008	Version 1, 13.09.2021	2 of 18
	·	•

1 Introduction

Red yeast rice food supplements are prepared by fermenting rice with fungus *Monascus purpureus*. If conditions are not monitored carefully, this fungus also produces citrinin during the fermentation process. Therefore, red yeast rice food supplements (RYR) may be contaminated with citrinin. RYR is available to the consumers as a powder packed in a cellulose capsule, dissolved in oil and packed in a gel capsule or pressed into a tablet.

Underlying legislation is Regulation (EC) No 1881/2006 amended by Regulation (EU) 2019/1901: '2.8.1 Food supplements based on rice fermented with red yeast *Monascus purpureus* – limit of 100 μ g/kg' (until November 2019 the legal limit was 2000 μ g/kg) [1].

2 Scope

This method describes the quantitative determination of citrinin, in red yeast rice food supplements packed as capsules (cellulose or gel) or as tablet. The method was developed and validated for citrinin in the range from 20 to 100 μ g/kg. Limit of quantification is 20 μ g/kg.

3 Principle

This method starts with determining the weight of the number of whole capsules or tablets intake and subsequently adding the correct volume of dispersion solution and extraction fluid. The samples (whole capsules or tablets) are first dissolved using the correct volume of an acidified aqueous solution and then directly extracted with acidified acetonitrile. After centrifugation, a salt-induced phase partitioning step is performed followed by centrifugation. An aliquot of the acetonitrile phase is diluted and analysed by high performance liquid chromatography (HPLC) coupled with tandem mass spectrometry (MS/MS). For quantification isotope labelled standards or single-level standard addition, added before phase partitioning, are used.

4 Reagents

All reagents must be "pro analysis" quality, or higher quality if stated.

4.1 Analytical standards

- **4.1.1** Citrinin, e.g. standard solution in acetonitrile, $100 \ \mu g/mL$.
- **4.1.2 13C13-Citrinin**, e.g. standard solution in acetonitril, 10 μg/mL.

4.2 Chemicals

- **4.2.1** Acetic acid (HAc), 99-100%
- **4.2.2** Acetonitrile (ACN), LC-MS grade
- 4.2.3 Ammonium acetate (NH4Ac)

EURL-MP-method_008	Version 1, 13.09.2021	3 of 18

- 4.2.4 Hydrochloric acid (HCl), 37%
- 4.2.5 Magnesium sulphate (MgSO4)
- 4.2.6 Methanol (MeOH), LC-MS grade
- 4.2.7 Sodium chloride (NaCl)
- 4.2.8 Water Ultra LCMS, ULC grade

4.3 Solutions and reagents

4.3.1 Ammonium acetate solution, 1.0 M

Dissolve 7.7 grams of ammonium acetate (4.2.3) in LC-MS grade water (4.2.8) and make up to 100 ml. The shelf life is six months at room temperature.

4.3.2 Dispersion solution, 10% NaCl in water containing 1% HCl + 1% HAc.

Weight 100 g NaCl (4.2.7) in 1 L-volumetric flask and add 10 mL of HAc (4.2.1) and 10 mL of HCl (4.2.4). Fill with water (4.2.8) up to the mark. The shelf life is one month at room temperature.

4.3.3 Extraction solution, acetonitrile containing 1% HCl + 1% HAc.

In 1L-volumentric flask, pipette 10 mL of HAc (4.2.1) and 10 mL of HCl (4.2.4). Fill up to the mark with acetonitrile (4.2.2). The shelf life is one month at room temperature.

4.3.4 Dilution solution, MeOH/water/HAc (80/18/2 V/V/V)

Mix 80 mL MeOH (4.2.6) with 18 mL of water (4.2.8) and 2 mL of HAc (4.2.1). The shelf life is six months at room temperature.

4.3.5 Mobile phase A, 5 mM NH4Ac / 0.05% HAc in water

Mix 5 mL of ammonium acetate solution 1.0 M (4.3.1) and 0.5 mL acetic acid (4.2.1) with 900 mL LC-MS grade water (4.2.8). Adjust the volume with LCMS grade water (4.2.8) to 1 L and mix well. The shelf life is one month at room temperature.

4.3.6 Mobile phase B, 5 mM NH4Ac / 0.05% HAc in methanol

Mix 5 mL of ammonium acetate solution 1.0 M (4.3.1) and 0.5 ml acetic acid (4.2.1) with 900 ml methanol (4.2.6). Adjust the volume with methanol (4.3.6) to 1 L and mix well. The shelf life is one month at room temperature.

4.4 Standard solutions

4.4.1 Citrinin standard solution 1.0 μg/mL

Mix 100 μ l of citrinin standard solution 100 μ g/ml (4.1.1) with 9.9 mL of dilution solution MeOH/water/HAc (80/18/2 V/V/V) (4.3.4).

4.4.2 Citrinin standard solution 100 ng/mL

Mix 100 μ l of citrinin reference standard solution 1.0 μ g/mL (4.4.1) with 0.9 ml of dilution solution MeOH/water/HAc (80/18/2 V/V/V) (4.3.4).

4.4.3 Citrinin standard solution 10 ng/mL

Mix 100 μ L of citrinin standard solution 1.0 μ g/mL (4.4.1) with 9.9 mL of dilution solution MeOH/water/HAc (80/18/2 V/V/V) (4.3.4).

4.4.4 13C13-Citrinin standard solution 1.0 μg/mL

Mix 100 μ L of 13C13-Citrinin 10 μ g/mL (4.1.2) with 0.9 mL of dilution solution MeOH/water/HAc (80/18/2 V/V/V) (4.3.4).

4.4.5 13C13-Citrinin standard solution 100 ng/mL

Mix 100 μ L of 13C13-Citrinin 10 μ g/mL (4.1.2) with 9.9 mL of dilution solution MeOH/water/HAc (80/18/2 V/V/V) (4.3.4).

4.4.6 Calibration solutions in solvent applying internal standard

Prepare calibration solutions by adding volumes of standard solutions, isotope-labelled standard solution and solvent, as indicated in the table below, to autosampler vials.

Code	Con tra (ng	ncen- tions /mL)	CIT 10 ng/mL	CIT 100 ng/mL	CIT 1000 ng/mL	13C13-CIT 100 ng/mL	Dilution solution (µl)
	CIT	13C13 -CIT	(μl) (4 4 3)	(µl) (4 4 2)	(µl) (4 4 1)	(µl) (4 4 5)	(4.3.4)
CAL1	-	-	-	(1112)	-	10	990
CAL2	0.20	1	20		-	10	970
CAL3	0.5	1	50			10	940
CAL4	1.0	1	-	10	-	10	980
CAL5	2.5	1	-	25	-	10	965
CAL6	5.0	1	-	50	-	10	940
CAL7	10	1	-	-	10	10	980
CAL8	25	1	-	-	25	10	965
CAL9	50	1	-	-	50	10	940

4.4.7 Calibration solutions in solvent applying single point standard addition

Prepare calibration solutions by adding volumes of standard solutions, isotope-labelled standard solution and solvent, as indicated in the table below, to autosampler vials.

Code	Concen- trations (ng/mL) CIT	CIT 10 ng/mL (μl) (4.4.3)	CIT 100 ng/mL (μl) (4.4.2)	CIT 1000 ng/mL (μl) (4.4.1)	Dilution solution (µl) (4.3.4)
CAL1	-	-		-	1000
CAL2	0.20	20		-	980
CAL3	0.5	50			950
CAL4	1.0	-	10	-	990
CAL5	2.5	-	25	-	975
CAL6	5.0	-	50	-	950
CAL7	10	-	-	10	990
CAL8	25	-	-	25	975
CAL9	50	-	-	50	950

EURL-MP-method_008	Version 1, 13.09.2021	5 of 18

5 Materials & equipment

Any reference to type and/or product is only to inform the user and to identify the equipment and does not imply exclusion of similar equipment. Usual laboratory glassware and equipment, in particular, the following, can be used:

- 5.1 Materials
- **5.1.1 Centrifuge tubes,** 50 mL, polypropylene, with screw cap
- **5.1.2 PP bottle**, 500 mL
- **5.1.3 PTFE Filter,** mini-UniPrep, 0.45 μm
- 5.2 Equipment
- **5.2.1 Balance,** accuracy +/- 0,01 g
- 5.2.2 Analytical balance, accuracy +/- 0,1 mg
- 5.2.3 Mechanical shaker head-over-head, adjustable
- 5.2.4 Vortex mixer
- 5.2.5 Centrifuge, suitable for 50 mL centrifuge tubes
- 5.2.6 LC-MS/MS system with the following components
- 5.2.6.1 LC pump, capable of delivering a binary gradient at flow rates appropriate for the analytical column in use with sufficient accuracy
- 5.2.6.1 Injection system, capable of injecting an appropriate volume of injection solution with sufficient accuracy, and cross-contamination below 0.1%.
- 5.2.6.1 Analytical column, capable of retaining citrinin and capable of baseline separation of citrinin.
- 5.2.6.1 Column oven, capable of maintaining a constant temperature of 50°C.
- 5.2.6.1 Tandem mass spectrometer (MS/MS), capable of ionisation of the compounds in positive mode, performing Multiple Reaction Monitoring (MRM), and with a sufficiently wide dynamic range and capable of unit mass separation and equipped with a computer-based data processing system. Any ionisation source giving sufficient yield may be employed.

· · · · · · · · · · · · · · · · · · ·	EURL-MP-method_008	Version 1, 13.09.2021	6 of 18
---------------------------------------	--------------------	-----------------------	---------

6 Procedures

This document describes the quantification of citrinin in red yeast rice food supplements. The target level is $100 \,\mu$ g/kg. The steps described in section 6.4 are presented in the format of a checklist in Annex A.1 when applying internal standards and Annex A.2 when applying single standard addition.

6.1 Quality control

Prepare recovery samples as follows:

Use a blank sample and weigh 2 portions of tablets or capsules into a PP flask of 500 mL (5.1.2)

- QC_{bl}: use the first portion as blank
- QC_{rec} : add to the second portion an amount of citrinin standard solution 100 µg/mL (4.4.1) to obtain a spike level of 100 µg/kg

Process the samples according to 6.4.

6.2 Pre-treatment

No pre-treatment of the samples is required.

6.3 Trial unit

The number of capsules for analysis is based on Regulation (EC) No 401/2006, amended with Regulation (EU) No 519/2014 [2].

6.4 Extraction, clean-up and preparation of test solutions

6.4.1 Extraction, clean-up and preparation of test solutions applying internal standard

- Weigh in the number of tablets or capsules needed into a PP bottle of 500 mL (5.1.2);
- Register the total weight of the tablets or capsules used;
- Add per 1 g of sample 2.5 mL of dispersion solution, 10% NaCl in water containing 1% HCl + 1% HAc (4.3.2);
- Shake on a mechanical shaker head-over-head (5.2.3) for 15 min;
- Add per 1 g of sample 5.0 mL extraction solution, acetonitrile containing 1% HCl + 1% HAc (4.3.3);
- Shake on mechanical shaker head-over-head (5.2.3) for 30 min;
- Transfer 15 mL of the extraction mixture to a 50 mL PP centrifuge tube (5.1.1) (equivalent to 2 g sample);
- Add 100 μl of 13C13-citrinin standard solution 1.0 μg/mL (4.4.4);
- Add 4 g magnesium sulphate (4.2.5) and 1 g sodium chloride (4.2.7);
- Mix 30 sec on a vortex mixer (5.2.4);
- Centrifuge the tubes at 3500 rpm for 10 minutes (5.2.5);
- Dilute the extract (ACN phase) 10x with dilution solution MeOH/water/HAc (80/18/2 V/V/V) (4.3.4);
- Transfer the final extract to a filter vial (5.1.3).

$6.4.2 \quad \text{Extraction, clean-up and preparation of test solutions applying single level standard addition at e.g. 150 \, \mu\text{g/kg}$

In this option matrix effects are compensated for on an individual sample basis. The final extract is split in two aliquots. One aliquot is analysed as such. To the other aliquot, a small

volume of solvent standard is added before phase separation. The concentration in the sample extract is calculated from the 1-point standard addition. A disadvantage of this option as described here is that each sample requires typically 2 injections.

Note: a single-level standard addition has been shown to give comparable results as multi-level standard addition when: a) the response obtained after standard addition is at least two times the response of the peak in the extract without addition, b) the response of extracts with and without addition are within the linear range of the detection. The latter can be verified through a calibration curve in solvent.

- Weigh in the number of tablets or capsules needed into a PP bottle of 500 mL (5.1.2);
- Register the total weight of the tablets or capsules used;
- Add per 1 g of sample 2.5 mL of dispersion solution, 10% NaCl in water containing 1% HCl + 1% HAc (4.3.2);
- Shake on a mechanical shaker head-over-head (5.2.3) for 15 min;
- Add per 1 g of sample 5.0 mL extraction solution, acetonitrile containing 1% HCl + 1% HAc (4.3.3);
- Shake on mechanical shaker head-over-head (5.2.3) for 30 min;
- Transfer two aliquots of 15 mL of the extraction mixture (ACN phase) to a 50 mL PP centrifuge tube (5.1.1) each;
- Spike one of the two aliquots with 300 μ l of citrinin standard solution 1.0 μ g/mL (4.4.1)
- Add 4 g magnesium sulphate (4.2.5) and 1 g sodium chloride (4.2.7);
- Mix 30 sec on a vortex mixer (5.2.4);
- Centrifuge the tubes at 3500 rpm for 10 minutes (5.2.5);
- Dilute the extract (ACN phase) 10x with dilution solution MeOH/water/HAc (80/18/2 V/V/V) (4.3.4);
- Transfer the final extract to a filter vial (5.1.3).

7 LC-MS/MS analysis

Chromatographic and mass spectrometric conditions may be chosen freely. The optimal measurement conditions strongly depend on the instrumentation used.

The LC-MS system is conditioned and the CAL2 is injected twice, followed by the injection of solvent. These injections should meet the following criteria:

- Retention times should be stable.
- Sensitivity should be sufficient and fit-for-purpose.: Sensitivity is sufficient if citrinin can be measured at the reporting limit level (0.36 ng/mL).
- Carry-over: The presence of the target compounds in the solvent injection is assessed. If the target compounds are present in the solvent injection, which might lead to a false-positive result, the specialist should be informed before starting the analysis series.

Example LC-MS/MS conditions and example LC-MS/MS chromatograms are given in Annex B.

	EURL-MP-method_008	Version 1, 13.09.2021	8 of 18
--	--------------------	-----------------------	---------

7.1 Injection sequence

Analyse the sample extracts in the order as given below.

- Dilution solution (4.3.4)
- Calibration solutions CAL (4.4.6 or 4.4.7)
- Dilution solution (4.3.4)
- o Blank chemicals
- Quality control blank sample (QC_{bl} 6.1)
- Quality control recovery sample (QC_{rec} 6.1)
- Sample extracts (6.4.1)
- Dilution solution (4.3.4)
- Calibration solutions CAL (4.4.6 or 4.4.7)

Optionally: injected calibration solution CAL4 (2.5 ng/mL) (4.4.6) at least after every 10 sample extracts.

8 Evaluation and calculations

Peak areas are used for all subsequent calculations. For each injection, check peak assignment and integration for all measured transitions and adjust if needed.

8.1 Verification of linearity of LC-MS/MS measurement

The calibration solutions CAL 1 to 9 (4.4.6 or 4.4.7) are used to determine the linearity of the LC-MS/MS system. Plot the response of the quantifier of all individual calibration solutions (4..4.6 or 4.4.7, calibration solutions 1 to 9) against the corresponding concentrations in ng/ml. Construct a calibration curve using (weighted) least-square regression with all individual data points obtained. Linearity has been demonstrated and the calibration curve is fit-for-purpose when the deviation of the back-calculated concentrations of the calibration standards from the true concentrations, using the calibration equation, do not exceed 20%.

8.2 Identification of citrinin in the samples

Identify citrinin in the samples by comparing retention time and ion ratio with that of the calibration solutions (4.4.6 or 4.4.7) according to SANTE/12682/2019 [3].

Citrinin is considered present and identified when:

- a) in the blank sample (QC_{bl}) , the peak for the quantifier ion at the retention time of the mycotoxin is below 30% of the limit of quantification;
- b) the retention time of the peak observed for the sample extracts differs less than 0.1 min from the average retention time as calculated from the calibration solutions;
- c) the ratio of the area of the quantifier and qualifier transition (lowest area/highest area) for the mycotoxin in the sample extracts deviates less than 30% (relative) from the average ion ratio of the calibration standards (=reference ion ratio).

Note: for calculation of the reference ion ratio use only responses with an S/N > 10. For the higher concentrations, exclude peak areas exceeding the linear range from calculation of the reference ion ratio.

	EURL-MP-method_008	Version 1, 13.09.2021	9 of 18
--	--------------------	-----------------------	---------

8.3 Quantification of citrinin in the samples

8.3.1 Quantification with isotope labelled internal standard

When the response is within the linear range, the concentration of citrinin in the sample is calculated based on 1-point bracketing calibration and the use of an isotope labelled internal standard. Calculate the concentration of citrinin in the sample according to Equation I

Equation I: Calculation of the concentration of citrinin in the sample

$$C_{s} = \frac{R_{s}}{R_{av}} \times \frac{V_{e}}{i} \times D \times C_{std} \times \frac{C_{label \, sample}}{C_{label \, std}}$$

Where:

C_s	=	is the concentration of the analyte in the sample in μ g/kg
R_s	=	is the response ratio of the quantifier peak area of citrinin and the quantifier peak
		area of its isotope labelled internal standard obtained from the sample
Rav	=	is the average of the response ratios of the quantifier peak area of citrinin and the
		quantifier peak area of its isotope labelled internal standard in the calibration
		standard injected before and after the sample
V_e	=	is extraction volume, here volume extraction solution added (mL)
i	=	is sample intake (g)
D	=	is the dilution factor
C_{std}	=	is the concentration of the citrinin in the calibration solution in ng/mL (4.4.6)
$C_{label \ sample}$	=	is the concentration of isotope-labelled standard in the final sample extract in
		ng/mL
Clabel std	=	is the concentration of isotope-labelled standard in the calibration solution in
		ng/mL

8.3.2 Quantification by means of single level standard addition

In case an internal standard for citrinin is not available the quantification can be performed by single level standard addition to the sample. Use Equation II to calculate the concentration in the sample:

Equation II Concentration in the sample (C) by means of single level standard addition to the sample

$$C_{sample} = \left(\frac{A_{sample}}{A_{added} - A_{sample}}\right) \times C_{added}$$

where:

 $\begin{array}{ll} C_{sample} & \text{is the concentration of the analyte in the sample } (\mu g/kg) \\ A_{sample} & \text{is the area of the quantifier in the sample} \\ A_{added} & \text{is the area of the quantifier in the spiked sample} \\ C_{added} & \text{is the concentration of citrinin in the final extract of the fortified sample in ng/ml.} \\ & (here: 0.3 \text{ ml x 1,0 } \mu g/ml/11 \text{ ml}^* \text{ x 1000/10} = 2.7 \text{ ng/ml}) \end{array}$

* total extraction volume is 11 ml due to increase by the extraction procedure (QuEChERS method)

8.3.3 Recovery

Determine the recovery by calculating the concentration of citrinin in the QC_{rec} sample (6.1), as described in section 8.3.1 or 8.3.2. The result should be between 90% and 110% of the amount added to the sample.

EURL-MP-method_008	Version 1, 13.09.2021	10 of 18
--------------------	-----------------------	----------

8.4 Final result

The concentration of citrinin in the sample red yeast rice food supplement is expressed as $\mu g/kg$.

9 References

- [1] EU (2006) Regulation (EC) No 1881/2006 amended with Regulation (EU) 2019/1901.
- [2] EU (2006) Regulation (EC) No 401/2006 amended with Regulation (EU) No 519/2014.
- [3] DG_SANTE, Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed SANTE/12682/2019. <u>https://ec.europa.eu/food/system/files/2020-</u>01/pesticides mrl guidelines wrkdoc 2019-12682.pdf

	EURL-MP-method_008	Version 1, 13.09.2021	11 of 18
--	--------------------	-----------------------	----------

Annex A.1 Checklist for sample preparation red yeast rice food supplements applying internal standard

Technician:	
Date:	
Lab. journal / page:	

Annex A.1 Checklist for sample preparation red yeast rice food supplements applying internal standard

A.1.1 Preparation of calibration solutions in solvent (4.4.6) applying internal standard

Code	Conce (n	ntrations a/mL)	CIT 10	CIT 100	CIT 1000	13C13-CIT 100	Dilution solution
	CIT	13C13- CIT	ng/mL (μl) (4.4.3)	ng/mL (μl) (4.4.2)	ng/mL (μl) (4.4.1)	ng/mL (μl) (4.4.5)	(μl) (4.3.4)
CAL1	-	-	-		-	10	990
CAL2	0.20	1	20		-	10	970
CAL3	0.5	1	50			10	940
CAL4	1.0	1	-	10	-	10	980
CAL5	2.5	1	-	25	-	10	965
CAL6	5.0	1	-	50	-	10	940
CAL7	10	1	-	-	10	10	980
CAL8	25	1	-	-	25	10	965
CAL9	50	1	-	-	50	10	940

Mix the following solutions:

A.1.2 Quality control recovery QC REC sample (100 µg/kg) (6.1)

- □ Weigh correct number of blank red yeast rice material in a PP bottle of 500 mL (5.1.2);
- □ Register the weight of the tablets or capsules used;
- \square Add correct amount of the citrinin standard solution 100 µg/mL (4.1.1) to make a QC_{rec} sample of 100 µg/kg (6.1);
- \Box Continue with A1.3.

EURL-MP-method_008	Version 1, 13.09.2021	12 of 18

Annex A.1 Checklist for sample preparation red yeast rice food supplements applying internal standard

A.1.3 Sample preparation for analysis (6.4.1)

- \Box Weigh in the number of tablets or capsules needed into a PP flask of 500 mL (5.1.2);
- \Box Register the total weight of the tablets or capsules used;
- □ Add per 1 g of sample 2.5 mL of dispersion solution, 10% NaCl in water containing 1% HCl + 1% HAc (4.3.2);
- □ Shake on a mechanical shaker head-over-head (5.2.3) for 15 min;
- □ Add per 1 g of sample 5.0 mL extraction solution, acetonitrile containing 1% HCl + 1% HAc (4.3.3);
- □ Shake on mechanical shaker head-over-head (5.2.3) for 30 min;
- □ Transfer 15 mL of the extraction mixture to a 50 mL PP centrifuge tube (5.1.1);
- \Box Add 100 µl of 13C13-Citrinin standard solution 1.0 µg/mL (4.4.4);
- □ Add 4 g magnesium sulphate (4.2.5) and 1 g sodium chloride (4.2.7);
- \Box Mix 30 sec on a vortex mixer (5.2.4);
- □ Centrifuge the tubes at 3500 rpm for 10 minutes (5.2.5);
- □ Dilute the extract (ACN phase) 10x with dilution solution MeOH/water/HAc (80/18/2 V/V/V) (4.3.4);
- \Box Transfer the final extract to a filter vial (5.1.3).

EURL-MP-method_008	Version 1, 13.09.2021	13 of 18

Annex A.2 Checklist for sample preparation red yeast rice food supplements applying single level standard addition

Technician:	
Date:	
Lab. journal / page:	

Annex A.2 Checklist for sample preparation red yeast rice food supplements applying single-level standard addition

A.2.1 Preparation of calibratio	n solutions in sovent (4.4.7)	applying single-level standards
addition		

Mix the f	mix the following solutions					
Code	Concentra	CIT	CIT 100	CIT 1000	Dilution	
	tions	10 ng/mL	ng/mL	ng/mL	solution	
	(ng/mL)	(µl)	(µl)	(µl)	(µl)	
	CIT	(4.4.3)	(4.4.2)	(4.4.1)	(4.3.4)	
CAL1	-	-		-	1000	
CAL2	0.20	20		-	980	
CAL3	0.5	50			950	
CAL4	1.0	-	10	-	990	
CAL5	2.5	-	25	-	975	
CAL6	5.0	-	50	-	950	
CAL7	10	-	-	10	990	
CAL8	25	-	-	25	975	
CAL9	50	-	-	50	950	

Mix the following solution

A.2.2 Quality control recovery QC REC sample (100 µg/kg) (6.1)

- □ Weigh correct number of blank red yeast rice material in a PP bottle of 500 mL (5.1.2);
- □ Register the weight of the tablets or capsules used;
- \Box Add correct amount of the citrinin standard solution 100 µl/mL (4.1.1) to make a QC_{rec} sample of 100 µg/kg (6.1);
- \Box Continue with A.2.3.

EURL-MP-method_008	Version 1, 13.09.2021	14 of 18

Annex A.2 Checklist for sample preparation red yeast rice food supplements applying single-level standard addition

A.2.3 Sample preparation for analysis (6.4.2)

- \Box Weigh in the number of tablets or capsules needed into a PP flask of 500 mL (5.1.2);
- \Box Register the total weight of the tablets or capsules used;
- □ Add per 1 g of sample 2.5 mL of dispersion solution, 10% NaCl in water containing 1% HCl + 1% HAc (4.3.2);
- □ Shake on a mechanical shaker head-over-head (5.2.3) for 15 min;
- □ Add per 1 g of sample 5.0 mL extraction solution, acetonitrile containing 1% HCl + 1% HAc (4.3.3);
- □ Shake on mechanical shaker head-over-head (5.2.3) for 30 min;
- □ Transfer two aliquots of 15 mL of the extraction mixture to a 50 mL PP centrifuge tube (5.1.1) each;
- \Box Spike one of the two aliquots with 300 µl of citrinin standard solution 1.0 µg/mL (4.4.1)
- □ Add 4 g magnesium sulphate (4.2.5) and 1 g sodium chloride (4.2.7);
- \Box Mix 30 sec on a vortex mixer (5.2.4);
- □ Centrifuge the tubes at 3500 rpm for 10 minutes (5.2.5);
- □ Dilute the extract (ACN phase) 10x with dilution solution MeOH/water/HAc (80/18/2 V/V/V) (4.3.4);
- \Box Transfer the final extract to a filter vial (5.1.3).

EURL-MP-method_008	Version 1, 13.09.2021	15 of 18

Annex B Example of LC-MS/MS conditions

B.1 LC conditions

The equipment and measuring conditions shown here are provided as an example. Other analytical equipment, columns, mobile phases and gradient conditions may work equally well.

Example conditions for the LC system				
LC system:	Waters Acquity Ultra LCMS (ULC grade)			
Analytical column:	Acquity HSS T3 1.8 μm 100 x 2.1 mm			
Column temperature:	40 °C			
Mobile phase solvent A:	5 mM NH4Ac / 0.05% HAc in water (4.3.5)			
Mobile phase solvent B:	5 mM NH4Ac / 0.05% HAc in methanol(4.3.6)			
Flow rate:	0.4 mL/min			
Injection volume:	5 μL			
Injection temperature	10 °C			
Gradient program:	Table B.1			

Table B.1 Gradient for the LC system

Tuble Dif drauten	the he system	
Time (min)	Mobile phase A (4.3.5) %	Mobile phase B (4.3.6) %
0	95.0	5.0
0.1	95.0	5.0
4.1	15.0	85.0
4.2	0.0	100
7.0	0.0	100
7.1	95.0	5.0
9.0	95.0	5.0

See Annex B.3 for an example LC-MS/MS chromatogram.

B.2 MS conditions

The conditions given in Table B.2 are guidelines; in practice adjusted settings may be required to obtain an optimal performance of the LC-MS/MS system.

Table B.2.1 Example for MS conditions

Parameter	Settings
Capillary voltage	2.80 kV
Cone voltage	20.0 V
Source Offset (V)	30 V
Source temperature	150°C
Desolvation temperature	450°C
Cone gas flow	150 L/hr
Desolvation gas flow	650 L/hr
Collision Gas Flow (mL/Min)	0.18 (mL/min)
Nebuliser Gas Flow (Bar)	7.00 (Bar)

The precursor ions fragment to structurally related products ions. In Table B.2.2 the theoretical masses of the precursor ion and corresponding product ions are shown. Depending on the instrument, a deviation of \pm 0.3 Da is allowed. All transitions shown in Table B.2.2 are included in the

EURL-MP-method_008	Version 1, 13.09.2021	16 of 18

MS method installed on the LC-MS/MS. The retention times can differ from column to column and between LC systems. The retention times shown in Table B.2.2 are therefore indicative.

Table D.Z.Z	MJ/MJ Magnient	ation condition				
Analyte	Indicative RT (min)	Precursor ion (m/z)	Cone voltage (V)	Product ion (m/z) (eV)	Collision energy (eV)	Dwell time (s)
Citrinin (qn	l)	281.2	20	249.2	30	0.080
Citrinin (ql1	l)	281.2	20	205.2	25	0.080
Citrinin (ql2	2)	281.2	20	177.1	20	0.080
¹³ C13-Citrin	in	294.2	20	262.2	30	0.080

Table B.2.2MS/MS fragmentation conditions for citrinin

EURL-MP-method 008	Version 1, 13,09,2021	17 of 18
LOND MI MCCHOU_000	VCISION 1, 15.07.2021	17 01 10

B.3 LC-MS/MS example chromatogram of a red yeast rice food supplement cellulose capsule/gel capsule fortified at 100 $\mu g/kg$

EURL-MP-method_008	Version 1, 13.09.2021	18 of 18