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Summary 

How many randomly placed cargo temperature sensors are necessary to gain a sufficiently accurate 

estimate of the temperatures of the complete cargo during refrigerated transport in reefer containers 

and (single compartment) refrigerated trailers? 

To answer the above question it is necessary to first determine what exactly the actual temperature 

profile in a standard container is. To that end a physical model of the temperature dynamics in reefer 

containers and refrigerated trailers was constructed. The model has not been validated explicitly, 

but the simulation outcomes compare reasonably well with what the authors, experts on temperature 

management during refrigerated transport, would expect. This physical model is then simulated for 

a reefer container shipment scenario representative of a banana transport. The scenario includes 

a pulldown phase because it assumes stuffing non-precooled bananas. Then a statistical model 

of the temperature distribution in a reefer container is defined. Inputs of the statistical model are 

any number of cargo temperature measurements collected at unknown locations in the cargo space. 

The statistical model simply calculates the cumulative distribution function of the measurements, 

without making any assumption about the type of distribution function. The difference between 

the statistical model output and the physical model output is analysed for a range of sensor numbers 

and different sensor-placement methods.  

 

The results indicate that there is little benefit in placing more than 30 randomly placed sensors 

per container load for the purpose of gaining a sufficiently accurate estimate of the temperatures 

of the complete cargo during refrigerated transport in reefer containers, when using these recordings 

as inputs for a statistical model.  

It is not to be expected that the situation will be a lot different for refrigerated trailers, because there 

is no radical difference between refrigerated trailers and containers in terms of equipment size or 

in terms of the typically occurring pattern of temperature distribution.  

Care should be taken, as the conclusions depend on many assumptions. 

Random sensor placement is an ineffective sensor placement method, as two smartly placed sensors 

can be more informative than e.g. 40 randomly placed sensors. Smart sensor placement in a container 

is: one in the bottom of the coldest pallet (position 2 or 3 from unit-end) and one in the centre of 

the warmest pallet (door-end). 

 

The main research question in this study is very generic, and therefore hard to answer adequately. 

For future studies it is recommended to be more specific in formulating the purpose and application 

domain of temperature recording during transport. 
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1 Introduction 

This study seeks to answer the following main question:  

 

How many randomly placed cargo temperature sensors are necessary to gain a sufficiently accurate 

estimate of the temperatures of the complete cargo during refrigerated transport in reefer containers 

and (single compartment) refrigerated trailers?  

 

Background of the question is the idea to routinely equip a part of the crates with temperature sensors 

to reconstruct the cargo temperatures after each shipment. Assuming that there is no control over 

the positioning of those crates in the complete cargo of 1000+ crates, which percentage of the crates 

should be equipped with sensors? 

Though the question sounds simple, answering it involves many debatable choices and assumptions. 

Some of the difficult choices: 

1. What is an appropriate unit of measure for the ‘estimate of the temperatures of the complete 

cargo’?  

2. How to judge if an estimate is ‘sufficiently accurate’? 

 

Despite these difficulties this manuscript seeks to answer the main question (see box above). 

Some of the assumptions made: 

1. The position of the randomly placed cargo temperature sensors is unknown. 

2. Limit the scope to palletized full load shipments of one type of cargo (no mix loads, no part 

loads, no hand-stowed cargo). 

3. Focus on chilled transport (setpoint > -5 °C) of fruit and vegetable, where autonomous heat 

production and the accompanying risk of heated pallet load centres exists.  

4. Cargo is not necessarily pre-cooled at start of trip. 

5. Let’s focus on warm ambient temperature of 30 °C. 

 

In order to determine how many randomly placed temperature sensors are required to accurately 

reconstruct the entire temperature profile in the container and its cargo, it is necessary to first 

determine what exactly the actual temperature profile in a standard container is. Therefore, in 

section 2 a physical model is developed to be as accurately as possible a representation of the true 

temperature distribution in a reefer. The model is constructed in such a fashion that its parameters 

can be adjusted to suit the type of trailer or container as well as its cargo specifics, thus the method 

will be applicable to various types of containers as well as cargo types, amounts and patterns of 

loading. The model is not validated explicitly, but the simulation outcomes are compared to what 

the authors, experts on temperature management during refrigerated transport, would expect.  

Secondly in section 3 the statistical model is defined. 

Thirdly in section 4 it is described how the statistical model outputs are compared to the true 

temperature distribution (i.e., the physical model outputs) to answer this manuscript’s main question 

on the needed number of temperature sensors (see box above). Section 5 then presents the results 

of this comparison, which are discussed in section 6. Finally, the study leads to the conclusions and 

recommendations listed in respectively sections 7 and 8. 
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2 Physical model 

Figure 1 sketches a reefer container. The positions of the return air temperature sensor and the supply 

air temperature sensor are indicated in the figure.  

u
ni

t
Treturn sensor

Tsupply sensor   

Figure 1 schematic presentation of reefer container 

 

The physical model discretizes the cargo space in multiple imaginary zones as illustrated in Figure 2 to 

account for the, usually dominant, temperature gradient in longitudinal direction. A natural choice 

is to dimension the model zones such that each zone contains two pallets next to each other. 

Within each zone the model distinguishes between air and pallet load. Each pallet load is then divided 

in multiple imaginary concentric layers to take into account that the temperature gradients within 

a pallet load can be significant (Figure 2). 

 

u
n

it

Treturn sensor

Tsupply sensor

φ1 φ2 φn

 

Figure 2  schematic representation of zonal model, distinguishing between air and 

pallet load temperature, accounting for temperature gradients within pallet 

load 

 

The heat balance for air in each zone z is  

1000

3600
× 𝑚𝑎𝑖𝑟,𝑧 × 𝑐𝑝,𝑎𝑖𝑟 ×

𝑑𝑇𝑎𝑖𝑟,𝑧(𝑡)

𝑑𝑡
=

𝜙𝑧

3600
× 𝜌𝑎𝑖𝑟 × 1000 × 𝑐𝑝,𝑎𝑖𝑟 × (𝑇𝑠𝑢𝑝(𝑡) − 𝑇𝑎𝑖𝑟,𝑧(𝑡)) + 𝑛𝑝𝑎𝑙𝑙𝑒𝑡𝑠_𝑝𝑒𝑟_𝑧𝑜𝑛𝑒  ×

𝑄𝑜𝑢𝑡,𝑛𝑙𝑎𝑦𝑒𝑟𝑠
(𝑡) + 𝑈𝑧 × (Tamb(t) − Tair,z(t))  [W]     (1) 

Note that all model variables used in this section are defined in Table 1. The sum of all zonal air flow 

rates 𝜙𝑧 equals the supply air flow rate delivered by the refrigeration unit (manufacturer’s spec):  

𝜙𝑢𝑛𝑖𝑡 = ∑ 𝜙𝑧
𝑛𝑧𝑜𝑛𝑒𝑠
𝑧=1   [m3/h]     (2) 

The sum of all zonal heat ingresses equals the container’s overall heat ingress according to:  

𝑈𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑈𝑧
𝑛𝑧𝑜𝑛𝑒𝑠
𝑧=1   [W.m-2.K-1]     (3) 

where heat loss coefficient Utotal relates to the overall heat transfer coefficient Ktotal and  

𝑈𝑡𝑜𝑡𝑎𝑙 =  𝐾𝑡𝑜𝑡𝑎𝑙 × 𝐴𝑡𝑜𝑡𝑎𝑙   [W.m-2.K-1]     (4) 

Ktotal is a manufacturer’s spec. 
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To define the heat balance for a model layer of the pallet load first the surface areas of these layers 

needs to be calculated. Pallet loads are shaped like rectangular cuboids. The surface area and volume 

of such bodies is given by: 

𝐴𝑝𝑙 = 2 × (𝐿𝑝𝑙 × 𝑊𝑝𝑙 + 𝐿𝑝𝑙 × 𝐻𝑝𝑙 + 𝑊𝑝𝑙 × 𝐻𝑝𝑙) [m2]     (5) 

And 

𝑉𝑝𝑙 = 𝐿𝑝𝑙 × 𝑊𝑝𝑙 × 𝐻𝑝𝑙    [m3]     (6) 

 

In the model we divide these rectangular cuboids in nlayers imaginary concentric rectangular cuboids 

(see Figure 3 for a schematic 2D representation).  

 

Figure 3  2D presentation of pallet load imaginarily divided in concentric rectangular 

cuboids 

 

Let layer 1 by the inner layer and layer nlayers the outer layer, where all layers are equally thick, then 

the thicknesses dL, dW and dH of the layers in all three directions are:  

𝑑𝐿 =
𝐿𝑝𝑙

2𝑛𝑙𝑎𝑦𝑒𝑟𝑠
, 𝑑𝑊 =

𝑊𝑝𝑙

2𝑛𝑙𝑎𝑦𝑒𝑟𝑠
, 𝑑𝐻 =

𝐻𝑝𝑙

2𝑛𝑙𝑎𝑦𝑒𝑟𝑠
 [m]     (7) 

While length Ll, width Wl and height Hl of the outer surface of layer l are 

𝐿𝑙 = 2 × 𝑑𝐿 × 𝑙, 𝑊𝑙 = 2 × 𝑑𝑊 × 𝑙, 𝐻𝑙 = 2 × 𝑑𝐻 × 𝑙 [m]     (8) 

After which the outer area of layer l is given by 

𝐴𝑙 = 2 × (𝐿𝑙 × 𝑊𝑙 + 𝐿𝑙 × 𝐻𝑙 + 𝑊𝑙 × 𝐻𝑙) [m2]     (9) 

The volume of layer 1 is given by  

𝑉1 = 𝐿1 × 𝑊1 × 𝐻1 [m3]     (10) 

And the volume of all other layers is given by 

𝑉𝑙 = 𝐿𝑙 × 𝑊𝑙 × 𝐻𝑙 − 𝐿𝑙−1 × 𝑊𝑙−1 × 𝐻𝑙−1   [m3]     (11) 

 

The heat balance for pallet load layer l in model zone z is 

1000

3600
× 𝑉𝑙 × 𝜌𝑝𝑙 × 𝑐𝑝,𝑝𝑙 ×

𝑑𝑇𝑙(𝑡)

𝑑𝑡
= 𝑄𝑖𝑛,𝑙(𝑡) − 𝑄𝑜𝑢𝑡,𝑙(𝑡) + 𝑄𝑝𝑟𝑜𝑑,𝑙    [W]     (12) 

Where 

𝑄𝑝𝑟𝑜𝑑,𝑙 = Vl × ρpl × 𝑞𝑝𝑟𝑜𝑑
𝑠𝑝𝑒𝑐

/1000   [W]     (13) 

And 

𝑄𝑖𝑛,𝑙(𝑡) = {
0                                                                                                              𝑖𝑓     𝑙 = 1

𝜆 × (
2×𝐻𝑙−1×𝑊𝑙−1

𝑑𝐿
+

2×𝑊𝑙−1×𝐿𝑙−1

𝑑𝐻
+

2×𝐿𝑙−1×𝐻𝑙−1

𝑑𝑊
) × (𝑇𝑙−1 − 𝑇𝑙)    𝑖𝑓     𝑙 > 1   

    [W]     (14) 
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And 

𝑄𝑜𝑢𝑡,𝑙(𝑡) =

{

𝜆 × (
2×𝐻𝑙×𝑊𝑙

𝑑𝐿
+

2×𝑊𝑙×𝐿𝑙

𝑑𝐻
+

2×𝐿𝑙×𝐻𝑙

𝑑𝑊
) × (𝑇𝑙(𝑡) − 𝑇𝑙+1(𝑡))                                                                                                          𝑖𝑓     𝑙 < 𝑛𝑙𝑎𝑦𝑒𝑟𝑠

(𝛼𝑝𝑎 × (2 × 𝐻𝑙 × 𝑊𝑙 + 2 × 𝑊𝑙 × 𝐿𝑙 + 2 × 𝐿𝑙 × 𝐻𝑙) +  𝜆 × (
2×𝐻𝑙×𝑊𝑙

0.5×𝑑𝐿
+

2×𝑊𝑙×𝐿𝑙

0.5×𝑑𝐻
+

2×𝐿𝑙×𝐻𝑙

0.5×𝑑𝑊
)) × (𝑇𝑙(𝑡) − 𝑇𝑎𝑖𝑟,𝑧(𝑡))    𝑖𝑓     𝑙 = 𝑛𝑙𝑎𝑦𝑒𝑟𝑠   

   

 [W]     (15) 

In the above equation Qout,l for l = nlayers describes the heat flow from the pallet load’s outer layer to 

the air in zone z.  

 

Assumptions:  
1. The above heat balance ignores the possible effect of transpiration.  

2. Assumes an equal airflow rate along all sides of all pallets in a zone. 

3. Assumes that air temperature around the pallet is everywhere the same.  

4. No air flow through the pallet load. 

5. Pallet load is a uniform medium (i.e., a uniform mix of packaging materials, air, and cargo). 

6. Stack effect (warm air has lower density and therefore tends to float to the top) ignored. 

 

Table 1 nomenclature of model variables introduced in this section 

Variable Description Value Unit 

𝜶𝒑𝒂 heat transfer 

coefficient between 

pallet load and air 

[5, 25] (default: 10) W.m-2.K-1 

𝝀 heat conduction 

coefficient of pallet 

load 

for many fruits 0.2 < 
lambda < 0.9, water: 
0.6 W/m/K, air: 0.024 
W/m/K 

W.m-1.K-1 

𝝆𝒂𝒊𝒓 air density 1.2 kg/m3 

𝝆𝒑𝒍 (bulk) density of pallet 

load, i.e., pallet load 

weight divided by 

pallet load volume 

avocado: 473, 

banana: 413, grape: 

243 

kg/m3 

𝝓𝒖𝒏𝒊𝒕 air flow rate of 

refrigeration unit  

5000 m3/h 

𝝓𝒛 air flow rate through 

zone z 

- m3/h 

Al outer surface area of 

model layer no. l 

 m2 

Apl outer surface area of a 

pallet load 

 m2 

Atotal surface area of 

container’s insulated 

enclosure  

 m2 

cp,air specific heat of air 1.0 kJ.kg-1.K-1 

cp,pl specific heat of cargo 

(pallet loads), 

dominated by carried 

product 

solid plastics = 1.67, 

paper = 1.34, ice = 

2.09, water = 4.18 

kJ.kg-1.K-1 

dH thickness of a layer in 

vertical direction 

- m 

dL thickness of a layer in 

longitudinal direction 

- m 

dW thickness of a layer in 

transversal direction 

- m 

Hl height of outer surface 

of layer no. l 

- m 
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Hpl height of pallet load 1.90 m 

Ktotal heat transfer 

coefficient of total 

container 

 W.m-2.K-1 

l pallet model layer no.  [1, nlayers] (1 = centre, 

nlayers = outer layer) 

- 

Ll length of outer surface 

of layer no. l 

- m 

Lpl length of pallet load 1.20 m 

mair,z mass of air in zone z  kg 

nlayers number of model 

layers (Figure 3) 

- - 

npallets_per_zone no. of pallets per 

model zone 

depends on zone 

length, by default 2 

- 

nzones number of model 

zones (Figure 2) 

- - 

𝒒𝒑𝒓𝒐𝒅
𝒔𝒑𝒆𝒄

 autonomous heat 

production by cargo 

[0, 60] W/tonne 

Qin,l(t) heat flux into model 

layer l 

 W 

Qout,l(t) heat flux out of model 

layer l 

 W 

Qprod,l(t) heat production in 

model layer l 

 W 

t time  h 

Tair,z(t) air temperature around 

pallet in zone z 

 °C  

Tamb(t) ambient air 

temperature 

 °C  

Tl(t) temperature of layer l  °C  

Tsup(t) supply air temperature  °C  

Utotal heat loss coefficient of 

insulated enclosure of 

total container 

 W.K-1 

Uz heat loss coefficient of 

insulated enclosure of 

zone z 

 W.K-1 

Vl volume of layer l  m3 

Vpl volume of a pallet load  m3 

Wl width of outer surface 

of layer no. l 

- m 

Wpl width of pallet load 1.00 m 

z zone no.  [1, nzones] (1 = unit-

end zone, nzones = 

door-end zone) 

- 
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2.1 Air flow rate and distribution of air flow over the 

zones 

Table 2 lists the typical characteristics of containers and trailers as far as relevant to the subject of 

modelling temperature distribution.  

 

Table 2 relevant typical characteristics of containers and trailers 

 container trailer 

no. of pallets (1.00 x 1.20 m) 20 26 

maximum air flow rate 𝜙𝑡𝑜𝑡𝑎𝑙 5000 m3/h 5000 m3/h 

internal L x W x H 11.60 x 2.29 x 2.54 m 13.40 x 2.45 x 2.60 m 

Typical K-value 0.35 W.m-2.K-1 0.40 W.m-2.K-1 

location of air supply bottom (Figure 1) top (Figure 4) 

 

R
et
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Supply air duct

Tsupply sensor

Treturn sensor

 

Figure 4 schematic presentation of refrigerated trailer 

 

A container carries 20 pallets, and a trailer 26 (Table 2). Both in a container and in a trailer, there are 

always two pallets beside each other. In a trailer both are oriented transversally, while in a container 

one is placed transversally and one longitudinally. The natural choice is to choose one zone per 

two-pallets-beside-each-other, resulting in a zonal length Lz of 1.10 m in containers and 1.00 m 

in trailers. Table 3 proposes a default distribution of air flow over these zones. This proposal is 

based on confidential measurements of air velocities in a reefer container (Lukasse et al., 2021a) 

and in a refrigerated trailer (Lukasse et al., 2021b). 

 

Table 3 default distribution of air flow over zones in % of airflow 

zone containers trailers 

1 7 4 

2 18 11 

3 18 11 

4 16 11 

5 12 10 

6 8 9 

7 6 9 

8 5 8 

9 5 8 

10 5 6 

11  5 

12  4 

13  4 
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2.2 Heat transfer coefficient K and distribution over 

the zones 

The overall heat transfer coefficient Ktotal of an insulated container or trailer depends on the K-value of 

the six individual wall panels according to  

𝐾𝑡𝑜𝑡𝑎𝑙 =
𝐾𝑤𝑟𝑓×𝐴𝑤𝑟𝑓+𝐾𝑑𝑜𝑜𝑟×𝐴𝑑𝑜𝑜𝑟+𝐾𝑢𝑛𝑖𝑡×𝐴𝑢𝑛𝑖𝑡

𝐴𝑤𝑟𝑓+𝐴𝑑𝑜𝑜𝑟+𝐴𝑢𝑛𝑖𝑡
  [W.m-2.K-1]     (16) 

See Table 6 for a description of all variables newly introduced in section 2.2. Variables introduced in 

preceding sections are not repeated in Table 6. From earlier projects the impression is that for trailers 

roughly 

𝐾𝑑𝑜𝑜𝑟 = 𝐾𝑢𝑛𝑖𝑡 = 3 × 𝐾𝑤𝑟𝑓  [W.m-2.K-1]     (17) 

while for containers, with usually thicker doors, this factor 3 is much closer to 1. Solve Kwrf from the 

above two equations to get 

𝐾𝑤𝑟𝑓 =
𝐾𝑡𝑜𝑡𝑎𝑙×(𝐴𝑤𝑟𝑓+𝐴𝑑𝑜𝑜𝑟+𝐴𝑢𝑛𝑖𝑡)

𝐴𝑤𝑟𝑓+3×𝐴𝑑𝑜𝑜𝑟+3×𝐴𝑢𝑛𝑖𝑡
  [W.m-2.K-1]     (18) 

Knowing the length L, width W and height H of containers and trailers, and using the above equation 

Kwrf and Kdoor can be calculated individually, see Table 4.  

 

Table 4 surface areas and K-value of wall panels for containers and trailers 

 container trailer 

Adoor [m2] 5.8 6.4 

Aunit [m2] 5.8 6.4 

Awrf [m2] 112.1 135.3 

Kwrf [W.m-2.K-1] 0.29 0.35 

Kdoor [W.m-2.K-1] 0.88 1.02 

 

The U-value of a zone is given by 

𝑈𝑧 = {
𝐾𝑤𝑟𝑓 × (2 × 𝐻 + 2 × 𝑊) × 𝐿𝑧                                                for       z = 1, … , nzones − 1

𝐾𝑤𝑟𝑓 × (2 × 𝐻 + 2 × 𝑊) × 𝐿𝑧 + 𝐾𝑑𝑜𝑜𝑟 × 𝐴𝑑𝑜𝑜𝑟                for      z =  nzones
 [W.m-2.K-1]     (19) 

This equation with the inputs from Table 4 is the basis for Table 5. The values for containers in Table 5 

do not exactly match the outcomes of the above equation, because they have been adjusted 

afterwards to make simulated temperatures match better with experience-based expected 

temperatures.  

 

Table 5 distribution of U-value across zones in % of total U-value 

zone containers trailers 

1 9.9 6.5 

2 9.9 6.5 

3 9.9 6.5 

4 9.9 6.5 

5 9.9 6.5 

6 9.9 6.5 

7 9.9 6.5 

8 9.9 6.5 

9 9.9 6.5 

10 10.9 6.5 

11  6.5 

12  6.5 

13  21.5 
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Table 6 nomenclature of model variables introduced in this section 

Variable Description Value Unit 

Adoor surface area of rear 

doors  

 m2 

Aunit surface area of unit  m2 

Awrf surface area of side 

Walls, Roof and Floor 

 m2 

H internal height of 

container 

 m 

Kdoor heat transfer 

coefficient of rear 

doors  

 W.m-2.K-1 

Kunit heat transfer 

coefficient of unit 

 W.m-2.K-1 

Kwrf heat transfer 

coefficient of side 

Walls, Roof and Floor 

 W.m-2.K-1 

L internal length of 

container 

 m 

Lz length of model zone z  m 

W internal width of 

container 

 m 

2.3 balances for return - and supply air temperature 

Transport refrigeration units typically record and/or control return air temperature Tret and supply air 

temperature Tsup. To enable a connection between these recordings and the model it is good to extend 

the model with dynamic heat balances for Tret and Tsup. The return air temperature sensor is located 

in the reefer unit’s evaporator section. In close analogy with eqn. 1 the heat balance for the return air 

zone is 

1000

3600
× 𝑚𝑟𝑧 × 𝑐𝑝,𝑟𝑧 ×

𝑑𝑇𝑟𝑒𝑡(𝑡)

𝑑𝑡
=

1

3600
× 𝜌𝑎𝑖𝑟 × 1000 × 𝑐𝑝,𝑎𝑖𝑟 × 𝜙𝑢𝑛𝑖𝑡 × (𝑇𝑟𝑢,𝑖𝑛(𝑡) − 𝑇𝑟𝑒𝑡(𝑡)) + Ufw × (Tamb(t) − Tret(t)) +

Qrp(t)  [W]     (20) 

with  

𝑇𝑟𝑢,𝑖𝑛(𝑡) =   
∑ (𝜙𝑧×𝑇𝑎𝑖𝑟,𝑧(𝑡))

𝑛𝑧𝑜𝑛𝑒𝑠
𝑧=1

∑ 𝜙𝑧
𝑛𝑧𝑜𝑛𝑒𝑠
𝑧=1

  [°C]     (21) 

Qrp(t) = Urp × (Tair,1(t) − Tret(t))  [W]     (22) 

𝑈𝑓𝑤 = 2 × H × W × Ktotal [W]     (23) 

𝑈𝑟𝑝 = 5 × Ufw  [W]     (24) 

See Table 7 for a description of all variables newly introduced in section 2.3. Variables introduced in 

preceding sections are not repeated in Table 7. The factor 2 in eqn. 23 is a rough approximation to 

account for the knowledge that container’s front wall, in which the reefer unit is mounted, is usually 

worse insulated than the rest of the container. The factor 5 in eqn. 24 is an arbitrary choice to account 

for the fact that the rear panel is much worse, basically not, insulated than the front wall.  

Note that Qrp(t) in eqn. 20 represents a heat flow through the reefer unit’s Rear Panel from the air in 

model zone 1 to the reefer unit’s evaporator compartment. To balance the equations a term -Qrp(t) is 

therefore added to the heat balance for the air in zone 1. 

Effectively equation 20 predicts Tret(t) = Tru,in(t) as long as the unit is powered up, and Tret is between 

Tamb(t) and Tcargospace(t) when the unit is powered off. 
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For supply air temperature Tsup(t) a merely empirically based first order differential equation is 

introduced: 

𝑑𝑇𝑠𝑢𝑝(𝑡)

𝑑𝑡
=

1

𝜏𝑇𝑠𝑢𝑝
× (𝑇sup,new(𝑡) − 𝑇𝑠𝑢𝑝(𝑡)) [°C]     (25) 

with 

𝑇sup,new(t) = {
𝑇𝑠𝑒𝑡(𝑡)                                                                                𝑖𝑓     𝑝𝑜𝑤𝑒𝑟 = 1

0.7 × 𝑇𝑟𝑒𝑡(𝑡) + 0.3 × Tair,1(𝑡)                                    𝑖𝑓     𝑝𝑜𝑤𝑒𝑟 = 0
 [°C]     (26) 

 

Table 7 nomenclature of model variables introduced in this section 

Variable Description Value Unit 

𝝉𝑻𝒔𝒖𝒑 time constant of 1st 

order filter for Tsup 

0.1 h 

cp,rz specific heat of metals 

in return air zone 

aluminium = 0.9, 

copper = 0.4 

kJ.kg-1.K-1 

mrz mass of metals in 

reefer unit’s 

evaporator 

compartment 

50 (estimate) kg 

Qrp(t) heat flow Q through 

reefer unit’s Rear Panel 

from cargo space to 

reefer unit’s 

evaporator 

compartment 

  

Tret(t) return air temperature  °C  

Tru,in(t) air temperature at inlet 

to refrigeration unit 

 °C  

Tset(t) setpoint temperature 

at time t 

 °C  

Tsup,new(t) newly calculated 

supply air temperature 

 °C  

Ufw heat transfer 

coefficient of insulated 

front wall 

 W.K-1 

Urp heat transfer 

coefficient of reefer 

unit’s rear panel  

5*Ufw W.K-1 
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3 Statistical model 

In the statistical model it is assumed that a number of Nsensors temperature sensors is placed in a batch 

of fruit. No further information is used: i.e., no information about sensor locations, no information 

about the type of transport equipment (trailer or container), no information about the size of 

thecontained space.  

 

At any time t a number of Nsensors measurements is collected in the batch. The statistical model simply 

uses these measurements (sample) to estimate the temperature distribution of the whole batch 

(population) at that same time t. This is done by calculating the cumulative distribution function of 

themeasurements. First the Nsensors measurements Tmeasured(s,t) are sorted in ascending order, where 

Tmeasured(s,t) is the temperature T measured by sensor s at time t. Then it is assumed that the chance 

of temperatures colder than or equal to Tmeasured(s,t) is: 

𝐹𝑠𝑡𝑎𝑡(𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑠, 𝑡)) =
𝑠

𝑁𝑠𝑒𝑛𝑠𝑜𝑟𝑠+1
 [-]     (27) 
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4 Case study  

For one specific transport scenario the performance of the statistical model has been analysed for 

twosensor-placement methods. The studied transport scenario is described in section 4.1. 

Theevaluated sensor-placement methods are described in section 4.2. The evaluation criteria 

toquantify the performance of the statistical model are defined in section 4.3. 

4.1 The studied transport scenario 

The studied transport scenario is a simulation run of the physical model (section 2). It concerns 

acontainer transport with a duration of 240 hours at setpoint 13.5 °C, initial cargo temperature 25 °C, 

autonomous heat production 20 W/tonne, a 12-hour power-off period between time 100 and 112 h, 

and an ambient temperature of 30 °C. These choices were made with a typical banana transport in 

mind. Though the analysis could be done for other fruit, there are two reasons to choose for banana:  

1. Banana is by far the most common fruit shipped in reefer containers: approximately 25% 

of all reefer container shipments carry bananas.  

2. Only in the banana trade it is common practice to not precool the cargo prior to container 

transport, hence the initial temperature of 25 °C, which is equal to the usual harvest 

temperature of bananas.  

 

The differential equations of the physical model were integrated using matlab’s ode45 function, which 

uses an explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair. It is a single-step solver – in 

computing x(tn), it needs only the solution at the immediately preceding time point, x(tn-1). 

The numerical accuracy was verified by running the simulation twice, once for default tolerances and 

once for very stringent tolerances, and visually verifying that there were no notable differences. Figure 

5 till Figure 8 visualise the simulation results in multiple ways.  
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Figure 5 time series plots of the simulated case. Presented are the air temperatures of 

each zone in the top figure, and the temperatures of supply and return air in 

the bottom figure 

 

 

Figure 6 contour plot of all simulated temperatures at initial time 0 h. 

 

 

Figure 7 contour plot of all simulated temperatures at time 24 h. 

 

 

Figure 8 contour plot of all simulated temperatures at final time 240 h. 
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Though the physical model has not been validated explicitly, the simulation outcomes match 

reasonably well with multiple experiences, such as:  

1. It takes multiple days before cargo temperature pulldown is completed (Figure 5a), like 

the authors observed many times in banana shipments. 

2. During power-off periods temperatures rise about 0.1 °C/h (100 < t < 112 in Figure 5a), 

while practitioners assume 0.25 °C/h as a rule of thumb for reefer loads in general (most 

reefer loads are carried at temperatures lower than 13.5 °C, and will therefore heat faster 

during power-off). 

3. In steady state the warmest pallets occur at the door-end, like measured in Lukasse et al. 

(2021a). 

4. During power-off periods supply and return air temperature rise much faster than cargo space 

temperatures (Figure 5), and after restoring power supply all air temperatures rapidly return 

to the level prior to the power-off period. This corresponds with what the authors observed 

many times in practical shipments. 

5. Pallet centres are warmer than the outer layers of pallets, also in steady state. This makes 

sense as it is hard to remove heat from pallet centres, where the air flow is nihil. Also, 

this corresponds with what the authors observed many times in practical shipments.  

4.2 The studied sensor-placement methods 

The two evaluated sensor-placement methods are: 

1. Random.  

2. Deterministic placement of 2 sensors: one in the bottom (layer 5) of the coldest pallet (zone 

2) and one in the centre (layer 1) of the warmest pallet (zone 10).  

What exactly does random mean in sensor-placement method 1? Random in the (X,Y,Z)-coordinates 

of the cargo. All randomly generated positions are based on uniform distributions of 

the (X,Y,Z)-coordinates between minimum and maximum bounds. In a uniform distribution 

all numbers are between the minimum and the maximum bounds and, as opposed to a normal 

distribution, all numbers between the minimum and maximum bounds are equally probable. 

4.3 Evaluation criteria 

The evaluation criteria are based on the difference between the cumulative distribution functions 

(CDFs) of the physical model output and the statistical model output. Section 3 explains how the CDF 

of the statistical model is calculated. The assessment of the CDF of the physical model output at time t 

involves the following steps. The physical model simulates all cargo temperatures, by dividing 

the cargo in 50 volume elements: nzones zones within each zone a pallet with nlayers layers, where nzones 

= 10 and nlayers = 5. Not each volume element represents an equal share of the cargo, because 

the volumes of the layers in a pallet load model differ (immediately visible in e.g. Figure 7). Therefore, 

a CDF of simply the 50 predicted temperatures would be an unbalanced representation of the cargo’s 

temperature distribution. For a balanced representation of the cargo’s temperature distribution 

the CDF of the 50 volume-weighted predicted temperatures is needed. Let V(v) be the vector of 

the 50 volume elements, where each cargo volume element has a cargo temperature Tv(t). Then 

𝐹𝑝ℎ𝑦𝑠(𝑇(𝑡)) =
1

∑ 𝑉(𝑣)50
𝑣=1

∑ ((𝑇𝑣(𝑡) ≤ 𝑇) × 𝑉(𝑣))50
𝑣=1  [-]     (28) 

where T(t) is defined as the vector of temperature values at which Fphys(T(t)) is evaluated. This study 

used: 

𝑇 = [−10, min
𝑣=1,..,50

𝑇𝑣(𝑡) − 0.1, T1(t) . . T50(t), 40] [°C]     (29) 

with T1(t) .. T50(t) the calculated temperatures of the model’s 50 volume elements, sorted 

in ascending order. As cargo temperatures evolve over time the cumulative distribution functions 

of both the physical model and the statistical model evolve over time. 



 

 18 | Public Wageningen Food & Biobased Research-Report 2279 

 

Figure 9 till Figure 11 illustrate this by means of examples. In this example the statistical model is 

based on two randomly placed sensors. Figure 9 shows that at time 0 no cargo temperature is below 

25 °C and no cargo temperature is above 25 °C, exactly as visualized in the contour plot in Figure 6. 

In that situation the statistical model perfectly matches the physical model (red and blue curves in 

Figure 9 coincide). After 24 hours the cargo temperatures are much more diverse (see contour plot in 

Figure 7): e.g., according to the physical model 33% of the cargo is colder than 17.4 °C (Figure 10). 

In this situation of diverse cargo temperatures, it is more difficult for the statistical model to match 

the physical model, resulting in a relatively large difference between the two CDFs (Figure 10). 

After completion of pulldown all cargo temperatures are at, or just above, setpoint (Figure 8). 

In these more homogeneous temperatures, it is easier again for the statistical model to match 

the physical model, resulting in a smaller difference between the two CDFs (Figure 11). According to 

the physical model’s CDF then the coldest cargo is 13.9 °C and the warmest is 15.4 °C (Figure 11), 

which corresponds well with the colours in the contour plot (Figure 8).  

 

 

Figure 9 

CDF of both models at initial time 0 h. 

 

Figure 10 

CDF of both models at time 24 h. (halfway 

pulldown) 

 

Figure 11 

CDF of both models in final steady state 

(t = 240 h) 

 

 

Under the assumption that the physical model representation of the container is sufficiently accurate, 

it is now possible to test if a randomly placed set of a specific amount of temperature probes is 

sufficient to reconstruct this physical representation. This is a statistical challenge, however, since 

statistics are most commonly used for null-hypothesis difference testing, where one assumes that 

two temperature distribution are similar, unless proven otherwise. 
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The problem of random sensor placement, where a distribution from the random sensor temperatures 

is compared to the actual temperature distribution found with the physical model, is a form of 

equivalence testing, where we assume the random sensor temperatures do not match the 

actual temperature distribution and hope to reject this null-hypothesis with a statistical test. 

For difference testing, the Kolmogorov-Smirnov (KS) test can be used to test if two distribution, 

considered the same, are in fact different. 

 

Figure 12 cumulative distributions of temperature in a container, where the continuous 

distribution (blue) is the true temperature distribution in the container as 

found with the physical model, and the discrete distribution (red) derived 

from a single randomly drawn configuration of 2 temperature sensors from 

all possible sensor locations in the 3D-container 

 

The KS-test takes the largest absolute difference between both distributions (thick orange line in 

Figure 12), from which the chance is calculated that the randomly measured temperatures differ from 

the true temperature profile. It may then happen that, based on the KS-test, it cannot be concluded 

that both distributions are different. This does not mean these are the same. Hence the KS-test 

cannot be used to determine if the random sensors can accurately reconstruct the actual temperature 

profile (test if sensors are equivalent to true profile). However, the differences between 

both distributions do contain information about how close the random sensors can determine 

the actual temperature profile. While least squares of absolute errors are conventionally used as 

a measure for similarity of two samples, for cumulative distributions the horizontal error gives more 

insight, as it is a measure of error in temperature. For a given percentage, e.g. 33%, the physical 

model indicates that 33% of the container is colder than 17.4 °C, whereas the single random 

configuration of sensors of Figure 13 indicates 33% of the container is colder than 18.6 °C, thus 

both distributions show a horizontal error of 1.2 °C in this example. 

The selected evaluation criterion is the maximum absolute (horizontal, i.e. temperature) error 

between the cumulative distribution functions (CDFs) of the physical model output and the statistical 

model output. It is evaluated at three time instants:  

1. Pulldown: at time t = 24 h, in the midst of temperature. 

2. Steady state: at time t = 240 h, in steady state. 

3. Full trip: time-averaged over the full trip, from time zero till 240 hours.  
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These three evaluation criteria are explained in further detail below. The maximum absolute error MAE 

at time t (evaluation criteria 1 and 2) is calculated as 

MAE(t) = max
𝑠

|𝐹𝑝ℎ𝑦𝑠
−1 (𝐹𝑠𝑡𝑎𝑡(𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑠, 𝑡))) − 𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑠, 𝑡)| [°C]     (30) 

where 𝐹𝑝ℎ𝑦𝑠
−1 (𝐹𝑠𝑡𝑎𝑡(𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑠, 𝑡))) is the temperature Tphys(t) at which Fphys(Tphys(t)) equals 

Fstat(Tmeasured(s,t)). It is found by linear interpolation between the two nearest data pairs (T(t); 

Fphys(T(t))) assessed in eqn. 28 and 29. Eqn. 30 boils down to assessing the length of the longest 

(bold) horizontal orange line in Figure 13.  

 

 

Figure 13 example of cumulative distribution functions of physical model, statistical 

model, and the difference (horizontal orange lines) 

 

Evaluation criterion 3 (full trip) is the trip-averaged value of the MAE(t) as defined in eqn. 30. It is 

calculated as 

MAE̅̅ ̅̅ ̅̅ (t) =
1

241
∑ (max

𝑠
|𝐹𝑝ℎ𝑦𝑠

−1 (𝐹𝑠𝑡𝑎𝑡(𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑠, 𝑡))) − 𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑠, 𝑡)|)240
𝑡=0  [°C2]     (31) 

For the case with two randomly placed sensors visualized in Figure 9 till Figure 11 the evolution of 

MAE(t) over time is depicted in Figure 14: MAE = 0 at t = 0 (Figure 9), then MAE reaches its highest 

value during pulldown (Figure 10) and then again a smaller MAE in the final steady state (Figure 11). 
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Figure 14 arbitrary example of MAE(t) as a function of time for a case with 2 randomly 

positioned sensors 
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Because the sensor placement is a stochastic process MAE(t) varies amongst realizations. Therefore, 

the three evaluation criteria are calculated for 1000 realizations with 2 till 40 sensors (39,000 

realization in total). The results are presented in box plots (see e.g. Figure 15).  

 

Figure 15 box plot showing MAE(t) in steady state for 1000 realizations with 2 till 

40 sensors (39,000 realization in total) 

 

On each box in Figure 15 the red central mark is the median, the lower and upper bounds of 

the blue box are the 25th and 75th percentiles, the black whiskers extend to the most extreme 

datapoints the algorithm considers to be not outliers, and the outliers are plotted individually 

(red plus). The maximum whisker length is set at 1.5x the distance between the Q1 and Q3 

percentiles, where Q1 and Q3 are the 25th and 75th percentiles. Points are drawn as outliers if 

they are beyond that range. The whisker length of 1.5x(Q3-Q1) corresponds to approximately 

99.3 coverage if the data are normally distributed. The worst case (top of upper whisker) and 

the Q3 error are interesting measures to assess the measured temperature error over the entire 

container based on these randomly placed sensors. If we place e.g. 2 sensors randomly 1000 times 

then in steady state the MAE(t) will hardly ever be larger than 0.87 °C (top of upper whisker), 

in 75% of cases MAE(t) will be less than 0.50 °C (Q3), and in 50% of cases MAE(t) will be less than 

0.35 °C (median). 

 

Although no statistical test of differences can be used to determine the optimal number of sensors, 

we can visualise the effect of the number of sensors on the expected temperature error between 

the actual temperature in the entire container (physical model output) and the temperature in 

the entire container as reconstructed based on a limited number of random sensors (statistical model 

output). For example, as indicated by Figure 15, placing 20 sensors would hardly ever result in 

a maximum absolute error of more than 0.47 °C (top of upper whisker) in steady state. In e.g. 

the example of Figure 16 the statistical model based on these 20 sensors indicates that 10% of 

the container is colder than 14.0 °C and 90% of the container is colder than 15.0 °C, we can derive 

how accurate this model based on these 20 sensors is. For this example, the maximum absolute error 

in the vast majority of cases of random sensor placement is 

T(10%) ≤ 14.0 ± 0.47 °C and T(90%) ≤ 15.0 ± 0.47 °C. By choosing a suitable allowable 

temperature error, a choice for number of sensors can be taken. A more pragmatic approach is to just 

qualitatively evaluate how the level of the upper whisker in the box plots evolves when the number of 

sensors increases.  
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Figure 16  example of Fphys(T(t)) and a realization of Fstat(Tmeasured(s,t)) for Nsensors = 20 

at time t= 240 h 

4.4 Evaluated simulations  

The studied transport scenario of section 4.1 has been taken as reference. The statistical model of 

section 3 is applied to this transport scenario for all sensor-placement methods described in 

section 4.2. The random sensor-placement method has been ran 1000 times for a number 

of 2 to 40 sensors: in total 1000 x 39 = 39,000 simulated sensor-placements. The deterministic 

sensor placement method with two sensors has been ran only once, as there is no stochasticity 

in this case.  
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5 Results  

5.1 Random sensor placement 

Figure 17 presents the Maximum Absolute Error at t = 24 h, i.e. in pulldown (evaluation criterion 1), 

for 1000 realizations of the random sensor placement method (section 4.2) for a number of 2 till 40 

sensors. The next figure (Figure 19) presents the same information in the format of a box plot. 

The results for evaluation criteria 2 and 3 are only presented in the format of box plots (Figure 20, 

Figure 21). 

 

  

Figure 17 MAE(t) at t = 24 h, i.e. in pulldown (evaluation criterion 1), for 1000 

realizations of random sensor placement (section 4.2) for 2 till 40 sensors 

 

In the below box plots each box contains a central red mark indicating the median, while the bottom 

and top edges of the blue box indicate the 25th and 75th percentiles, respectively. The whiskers 

extend to maximally 1.5 x (Q3- Q1), yielding approximately 99.3 coverage if the data are normally 

distributed. 
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Figure 18 box plot for MAE(t) in pull down, i.e. t = 24 h (evaluation criterion 1), for 

1000 realizations of random sensor placement for 2 till 40 sensors 

 

 

Figure 19 box plot for MAE(t) in steady state (evaluation criterion 2) for 

1000 realizations of random sensor placement for 2 till 40 sensors 
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Figure 20  box plot for trip-averaged MAE(t) (evaluation criterion 3) for 

1000 realizations of random sensor placement for 2 till 40 sensors 

 

5.2 deterministic sensor placement 

For the deterministic sensor placement method (section 4.2) with two sensors Table 8 presents 

the results. 

 

Table 8 simulation results for deterministic placement of 2 sensors 

description of variable value 

MAE(t) in final steady state (evaluation criterion 1) 0.00 °C 

trip-averaged MAE(t) (evaluation criterion 2) 0.01 °C  
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6 Discussion  

6.1 Required number of sensors 

How many randomly placed cargo temperature sensors are needed? The randomness causes a large 

uncertainty. As Figure 20 illustrate e.g. two luckily placed sensor may yield a trip-averaged MAE of 

0.15 °C (end of lower whisker), while 40 sensors placed with bad luck may yield a worse trip-averaged 

MAE of 0.72 °C (end of upper whisker). As explained in section 4.3 the top edges of the upper 

whiskers in Figure 18 till Figure 20 are taken as a measure in answering the preceding question.  

Note that in Figure 18 (during pulldown) the MAE tends to be larger than in Figure 19 (steady state). 

This is simply the consequence of the presence of much bigger temperature gradients in the container 

during pulldown. Also note that there seem to be a relatively large numbers of outliers (red pluses) 

in the box plots. The used whisker length of 1.5x(Q3-Q1) corresponds to approximately 99.3 coverage 

if the data are normally distributed. Why are so many realizations qualified as outliers? Because 

the 1000 realizations of MAE(t) for a specific number of sensors are not normally distributed. 

This has been verified by checking the histograms for specific sensor numbers (not shown). Whether 

or not the outliers are taken into account would not affect this report’s conclusion, therefore no further 

action is taken. 

Qualitatively evaluating how the level of the upper whisker in the box plots (Figure 18 till Figure 20) 

evolves, indicates that there is little benefit in using more than 30 randomly placed sensors. If one 

is satisfied with less accurate temperature estimates, for example because the carried cargo 

is less temperature-sensitive or the trip duration is shorter, then one may opt to use less sensors, 

accepting the risk of slightly worse temperature estimates. The methodology described in the final 

paragraph of section 4.3 may then be used to quantify the possible error margins to be anticipated. 

6.2 Deterministic sensor placement 

Is random placement a smart thing to do or is deterministic sensor placement superior? Deterministic 

sensor placement requires care, but proper deterministic sensor placement easily outperforms random 

sensor placement. As Table 8 illustrates only 2 sensors are needed to achieve MAE(tf) = 0.00 °C and 

MAE̅̅ ̅̅ ̅̅ (t) = 0.01 °C, while Figure 18 and Figure 20 show that with even 40 randomly placed sensors 

the performance may well be worse.  

 

 

Figure 21 dots indicate the positions of the two deterministically placed sensors 

yielding the performance reported in Table 8  

 

Note that the used deterministic sensor placement was inspired by the realization for Nsensors = 2 with 

the lowest trip-averaged MAE in Figure 20. Its sensor locations are illustrated in the figure below. 
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Figure 22 dots indicate the positions of the two deterministically placed sensors 

yielding the best performance for Nsensors = 2 in Figure 20 

 

Note that there could still be reasons to use more, possibly randomly placed, sensors. Think e.g. 

of manufacturers of temperature-sensitive pharmaceuticals who routinely place at least 

one temperature sensor on each pallet load to record temperatures from moment of production till 

delivery at client (encompassing much more supply chain links than only container transport). 

If those sensors are there anyway, then they can easily be used as input to the statistical model. 

Another reason to use more temperature sensors is to be more robust against deviations between 

reality and this study’s physical model. Such deviations may very well occur. E.g. when pallets 

are stowed less precisely: more or less direct contact with warm side walls, or when deviations from 

the presumed air flow distribution pattern occur, or when gradients occur in supply air temperature 

between left and right, possibly due to frost accumulation in the refrigeration unit. 

6.3 Economic value 

What is the economic value of a low trip-averaged Maximum Absolute Error (evaluation criterion 3, 

eqn. 31)? The question is insufficiently specific, and therefore impossible to answer. A low 

trip-averaged Maximum Absolute Error does mean that temperature recordings filtered through 

the statistical model give an accurate estimate of the evolution of the temperature distribution over 

time. The economic value of this information depends on many factors, such as the economic value 

of the cargo, the temperature sensitivity of the cargo, the duration of the trip, whether the collected 

information is actually actionable information, and the economic impact of such actions. 

6.4 Applicability to refrigerated trailers 

This study is limited to one simulated transport in a reefer container. Would the conclusion be different 

for a (single compartment) refrigerated trailers? No or hardly, because the physical model for the 

two cases is nearly identical. In reality the most significant difference is the use of bottom-air delivery 

in containers (Figure 1) versus top-air delivery in trailers (Figure 4). This has effect on vertical 

temperature gradients in the cargo space, but vertical temperature gradients are ignored in 

this study’s physical model. With a richer model structure, taking into account vertical temperature 

gradients, the results might be a bit different. Yet, the authors do not expect a big difference. 

  



 

 Public Wageningen Food & Biobased Research-Report 2279 | 29 

 

6.5 Mechanistic or statistical model? 

This study evaluates the estimation of all cargo temperatures from a limited number of measured 

cargo temperatures using a statistical model. Could better results be achieved by using a (partly) 

mechanistic model? Probably, but that approach is also much more complicated for multiple reasons: 

1. The equations for processing the measurements will be (much) more complex. 

2. Information about the transport equipment is needed. 

3. Information about sensor locations is needed. 

 

The statistical model is attractive for its simplicity: one simple model can be applied to any batch 

of fruit, and no further information is needed. A mechanistic (inverse!) model should be feasible, 

but the equations are (much) more complex (1), and require input of mechanistic information 

like evaporator fan capacity and control, supply air temperature, insulation value, and possible other 

parameters (2), to relate the model predictions to the sensor data the sensor locations need to be 

known (3).  
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7 Conclusions  

The results indicate that there is little benefit in placing more than 30 randomly placed sensors 

per container load for the purpose of gaining a sufficiently accurate estimate of the temperatures 

of the complete cargo occurring during refrigerated transport in reefer containers, when using 

these recordings as inputs for a statistical model.  

It is not to be expected that the situation will be a lot different for refrigerated trailers.  

Care should be taken, as the above conclusions depend on many assumptions. 

 

Random sensor placement is an ineffective sensor placement method, as two smartly placed sensors 

can be more informative than e.g. 40 randomly placed sensors. Smart sensor placement in a container 

is: one in the bottom of the coldest pallet (position 2 or 3 from unit-end) and one in the centre of 

the warmest pallet (door-end). 
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8 Recommendations 

It is recommended to be more specific in formulating the purpose and application domain 

of temperature recording during transport. Purposes can e.g. be:  

1. Gain a sufficiently accurate estimate of the temperatures of the complete cargo occurring 

during refrigerated transport.  

2. Prove that no single cargo item in a pharmaceutical shipment experienced a temperature 

excursion during transport. 

3. Prove that all temperatures staid below a certain threshold value during shipments according 

to USDA cold treatment protocol for quarantine purposes. 

4. Collect some data that could serve as evidence in case cargo claims arise. 

 

Also the application domain matters: 

1. Whether or not the cargo is precooled affects the anticipated temperature distribution.  

2. Is the cargo dead or not? I.e. could autonomous heat production persistently cause elevated 

temperatures in pallet centres? 

3. The higher the temperature-sensitivity and the economic value of the cargo the more 

worthwhile it may be to accurately monitor the cargo temperatures during transport.  

 

A more accurate physical model, taking into account vertical temperature gradients, can help 

to improve the accuracy of the outcomes, and give more specific advice. 
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