Potential of municipal Kitchen- and Garden waste as a raw material for producing fatty acids for animal feeds

1. Amounts of separate collected municipal Kitchen- and Garden waste

- 2. Legal restrictions for use in animal feeds
- 3. Evolution in processing Kitchen- and Garden waste over the years
- 4. Production biogas from fatty acids ... or not? \rightarrow fatty acids (to be used in animal feeds)
- 5. BUCA a first orientation
- 6. Conclusion and follow-up

Willem Elsinga

1. Amounts of separate collected municipal Kitchen- and Garden waste

source separated municipal biowaste since 1993, trend and forecast 2030

European Regulation for Animal By-products and *5 considerations* as starting point:

- 1. Legal issues: for instance, Category 3- material
- 2. Products should not contain chemical traces of animal tissue
- 3. Kitchen waste contains some protein, no technological means for 100% removal from solids
- 4. Proteins and carbohydrates are nowadays transferred into fatty acids and methanized (biogas)
- 5. We see technological means to separate fatty acids free from animal traces \rightarrow no methanization

If this could work, no special collection measures for kitchen and garden waste are needed

3. Evolution in processing Kitchen- and Garden waste over the years

4. Production biogas from fatty acids ... or not? \rightarrow fatty acids (to be used in animal feeds)

source separated municipal biowaste since 1993, trend and forecast 2030

5. BUCA – assessment: replace biogas for fatty acid production (SCFA/MCFA)

5. BUCA – assessment: replace biogas for fatty acid production (SCFA/MCFA)

European Regulation for Animal By-products and **5** considerations as starting point:

- 1. Legal issues: for instance, Category 3- material
- 2. Products should not contain chemical traces of animal tissue
- 3. Kitchen waste contains some protein, no technological means for 100% removal from solids
- 4. Proteins and carbohydrates are nowadays transferred into fatty acids and methanized (biogas)
- 5. We see technological means to separate fatty acids free from animal traces \rightarrow no methanization

If this could work, no special collection measures for kitchen and garden waste are needed

Follow up: - first process design of fermentation with focus on separation of SCFA (filtration, distillation)

- check mass balance, additional lab and pilot experiments, (m) LCA
- CAPEX, OPEX, is BUCA 2 competitive

Who can take it from this starting point to a feasible project? There is a real potential for a next step in the evolution of biowaste processing!

Municipal Kitchen- and Garden waste as a raw material for producing fatty acids for animal feeds

Possible, but competition with prices biogas

Thanks for the attention

www.beleidsplanning.nl