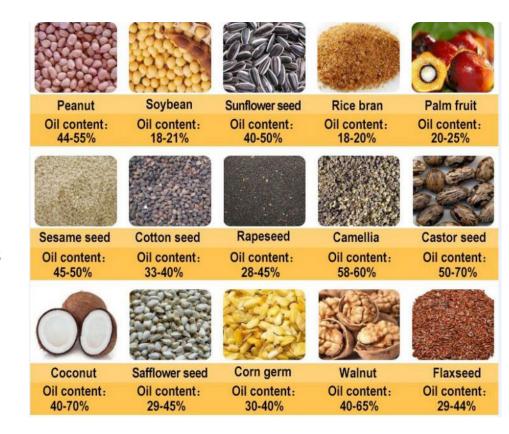
Intrinsic – Integrated sustainable processing of oil and functional protein from oilseeds

5-year project (start: 2022), both fundamental and applied research 6-6-2024, Peter Geerdink, Wim Mulder, Aard de Jong

Project partners

- **Foss**: Developer of analytical equipment. Creates end-to-end solutions that secure and improve food quality (Denmark)
- Cano-Ela: Startup developing a novel, solvent free process to extract less refined ingredients from oilseeds (Netherlands)
- Riverina: Vertically integrated, bulk canola oil supplier, located in NSW, Riverina region (Australia)
- Valtris/Champlor: Processer of rapeseed from regional sources (France)
- Danone: Global company in dairy and plant-based products, early life and medical nutrition and waters (Netherlands)
- Wageningen UR: University and research institute in the field of agriculture and life sciences (Netherlands)
- Project sponsored by the Dutch government (TKI financing)

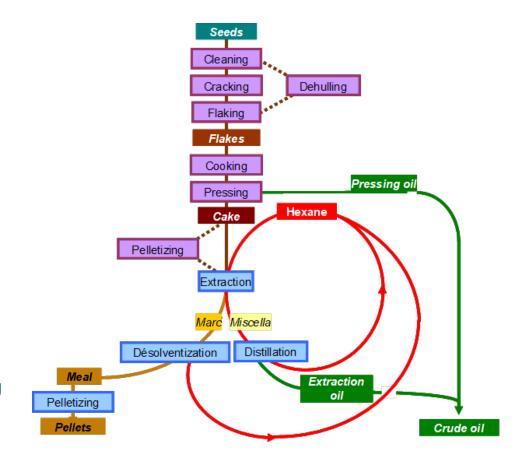


Traditional oilseeds and other oil crops

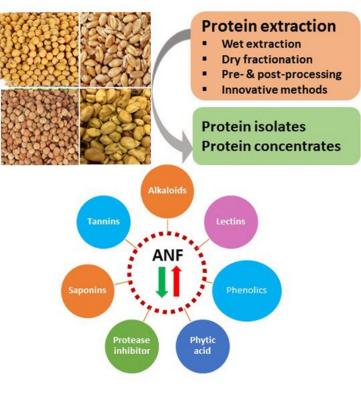
- Processing differs per crop
- Most seed processing similar
 - Expeller
 - Solvent extraction
- Extracted meal mostly feed
- Recently more interest in proteins from oilseed meal

Oilseed of choice

- Oilseeds of choice:
 - Rapeseed/Canola
 - Mostly produced in EU, Canada and Australia
 - Sunflower
 - Mostly produced in EU, Ukraine and Russia
- Oilseeds are an important crop for the transition from mineral oil to a sustainable alternative

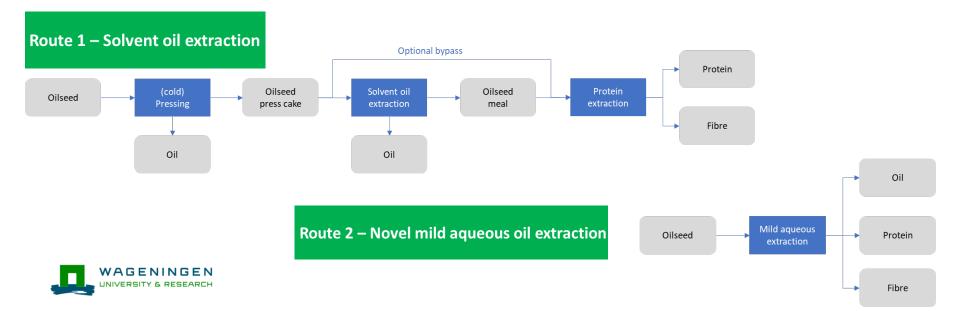


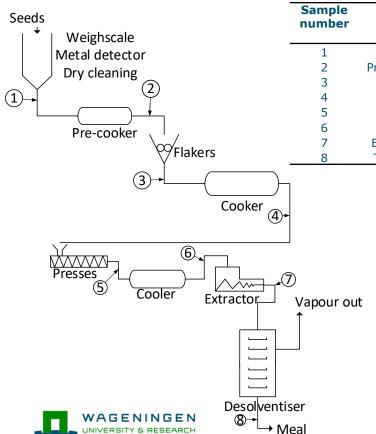
Oil production from oilseeds – traditional


- Processing steps oilseeds
 - Sorting/cleaning
 - Dehulling
 - Grinding/milling
 - Conditioning/flaking
 - Cooking/expanding
 - Pressing
 - Solvent extraction
 - Toasting/desolventising
 - Oil distillation & refining

Background

- Oilseed residues are the largest global source of protein, mostly used as feed.
- Protein from oilseed has a huge potential impact as a food ingredient.
- Challenges:
 - Extractability of protein after oil extraction
 - ANF's and residues in the protein product
 - Optimization of protein yield combined with oil yield





Objective

- Develop 2 routes for protein and oil production from rapeseed
 - Protein extraction of material from a conventional oil production plant
 - Protein and oil production via novel aqueous protein and oil production route

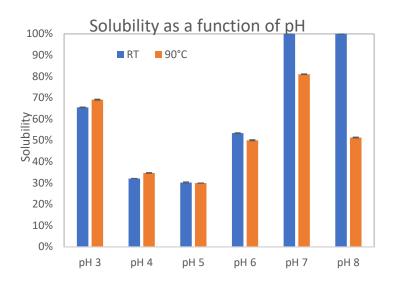
Industrial processing and in-factory sampling

Sample number	Name	Dry weight (%)	Protein content (%)
1	Inlet	93.1	18.6
2	Pre-cooker	94.1	18.2
3	Flaking	94.3	17.7
4	Cooker	96.0	18.6
5	Press	92.9	26.5
6	Cooling	95.3	26.6
7	Extractor	90.7	33.8
8	Toasting	90.1	34.0

Site: Valtris/Champlor, Verdun, France

Process-product interaction

Protein solubility influenced by industrial processing



Sample 7 starting material for extraction

Results

- Small scale napin extraction
 - 82% protein purity, napin yield 50%
- Functional properties:

pH 8 Self-supporting gel

Future research

- Scaling up napin isolation.
- Simultaneous extraction of cruciferin
- The removal of anti-nutritionals in the process will be assessed
- NIR methodology (FOSS) will be developed to analyse properties in the samples.
 - Create a predictive method to provide insight in protein properties

Sunflower

Sunflower

Scaling up?

Rapeseed

- Cruciferin (11S globulin)
- Napin (2S albumin)
- Oleosin

Helianthinin (11S globulin)

Albumin (2S albumin)

Oleosin

Cruciferin has 40% homology with Helianthinin Napin has 23% homology with 2S albumin form sunflower

Thank you for your attention

Project team:

- Brigit Beelen
- Costas Nikiforidis
- Sybren Zondervan
- Nam-Phuong Hublet Hua
- Marieke Schenkel
- Willemijn Liese

