AGROS knowledge event "The road towards sustainable data-driven agriculture"

April 24, 2024, Wageningen University & Research, Wageningen, The Netherlands

Program network and knowledge event

13:00 Keynote Marc Jacobs – Digitalisation in agriculture, integrating human and technological processes

- 13:45 AGROS Examples of horticulture, arable farming and dairy
- 14:30 Workshop session 1
- 15:10 Coffee and tea break
- 15:40 Workshop session 2
- 16:20 Workshop session 3
- 17:00 Closure with drinks

AGROS "To sustainable agricultural systems"

Integration of biology and technology in arable farming, dairy and horticulture Anja Dieleman, István Fodor and Jan Kamp, Wageningen, April 24, 2024

Challenges in agriculture

- Economic viability
- Resource use efficiency:
 - Energy (consumption and production)
 - Water and nutrients
- Availability of skilled labour
- Animal and crop health
- Greenhouse gas emissions
- Biodiversity

Fast developments in automation, AI, etc.

Next step: data-driven agricultural production systems, based on sensors, vision technology, and intelligent algorithms to support decisions

AGROS

- "Technology for ecology" concept
- Three use-cases: horticulture, arable farming and dairy

Challenges:

- Greenhouse horticulture: resource use efficiency, labour and economic viability
- Dairy farming: GHG emissions, resource use efficiency, and animal health
- Arable farming: crop health, energy production and biodiversity

AGROS "Towards an autonomous greenhouse"

- Terminology "autonomous cultivation"
- In AGROS: Development of intelligent algorithms for autonomous control of greenhouse climate and crop management
- Based on sensor data
- Using an objective goal function.

Steps towards an autonomous greenhouse"

Understand crop physiology and cropping system Under changing conditions

Sensors for automated crop measurements

- Digital
- Robust
- Interpretable

Models for

- Analysis
- Interpretation
- Prediction

AI algorithms

- Selection
- Prediction
- Control

Steps "to an autonomous greenhouse" - AGROS

11

Data required for control

Greenhouse climate

Set points Realized climate

Crop management

Leaf picking - LAI Fruit pruning strategy Average fruit weight No of harvests/week

Crop

Light interception Leaf formation rate Fruit growth duration Harvest (no and weight)

Irrigation

No of irrigation shots Shot size % drain

WS Session 1 Smart sensing

12

Data required for control

Greenhouse climate

Set points Realized climate

Crop management

Leaf picking - LAI Fruit pruning strategy Average fruit weight No of harvests/week

Crop

Light interception Leaf formation rate Fruit growth duration Harvest (no and weight)

Irrigation

No of irrigation shots Shot size % drain

WS Session 1 Smart sensing

Vision technology: plant development rate

- No of newly formed leaves crucial for control
- No sensor available
- Trained object detection network to monitor and count leaves
- Provides daily value

WS Session 3 Vision technology

Intelligent algorithms

- Development of intelligent algorithms for autonomous control of greenhouse climate and crop management
 - Based on mechanistic greenhouse climate model and crop models: Digital Twin
 - Based on AI: Reinforcement Learning

Proof of concept "autonomous cultivation"

- Three cucumber crops were controlled by:
 - Reference "growers"
 - Digital Twin
 - AI Reinforcement learning
- Cultivation January March 2023
- Goal function: maximize net profit (costs: heat, electricity and CO₂, benefit: cucumbers)
- Data collection by cameras and sensors, validation by manual measurements

WS Session 2 Intelligent control

Results "proof of concept" autonomous cultivation

Successful autonomous cultivation strategies:

- Full autonomous control of cultivation by Digital Twin
- Autonomous control of climate during 2 months by Reinforcement Learning
- Reference: cultivation according to cultivation plan, little adjustments required
- Vision technology: good results in measurements of crop characteristics
- Datasets of greenhouse climate, crop and sensor data generated.

Future perspectives

- Autonomous greenhouse control is feasible
- Can deal well with uncertainties weather forecasts, variable prices of inputs and products, ...
- Challenges: reliability of data (input in control), cyber security, availability of internet, adoption by growers, ...
- Future steps: determine crop boundaries, vision development, AI algorithms, growers' involvement, application of concept.

AGROS II.

AGROS "Towards a sustainable dairy farming"

Develop methods for *individual* monitoring

- \rightarrow Improve sustainability of dairy production
- \rightarrow Improve animal health

Improved **feed efficiency** (~ kg feed/ kg milk)

↓ environmental impact
↓↓ costs (feed >50% of total costs)

Emissions from cows

- \rightarrow Global warming
- → Loss of energy from feed

How are these linked? Relationship with health?

WS Session 2 Detection and intelligent control of diseases

* Dairy until December 2024

Breath analysis as a **non-invasive early** disease detection tool in cows

Use breath to "look into blood composition"

Volatile Organic Compounds (VOCs)

Pilot – results available

WS Session 2 Detection and intelligent control of diseases

WAGENINGEN UNIVERSITY & RESEARCH **Radboud** Universiteit

21

2D & 3D computer vision applications on farms

Disease detection (e.g., lameness)

Behaviour

Feed intake

....

WS Session 3 Vision technology: monitoring cows and cucumbers

RGB-depth imaging to estimate feed weight

Future perspectives

- Emission monitoring
 - Scaling up
 - More information than GHG ~ global warming
- Computer vision wide range of applications
- Individual cow-level information
 - \rightarrow Monitoring (e.g., disease)
 - \rightarrow Breeding (e.g., emissions, resource use)

AGROS: "Towards sustainable arable farming"

24

AGROS: "Towards sustainable arable farming"

T4E concept as a central focal point

• Fast developments in farming:

- + highly productive
- + reduction of labor / ha

- soil compaction
- loss of biodiversity

Ecology to the background

Translation T4E in AGROS – Arable Farming

- What is needed in the near future? Main challenges related to T4E?
- Our reference: Farm of the Future concept
- How can technology support ecology in new farming systems?

Future scenarios – Ellen Bulten / Herman Schoorlemmer

3 scenarios for future mixed cropping systems in 2040

- Data for your convenience
- Ecology at the wheel
- Crisis for action

Each scenario describes:

- Socio-societal and climatic context
- Arable value chain
- Arable farm

Interested?? Go to: Session 3 - #1 (Herman Schoorlemmer) Meidoornzaal

Data for your convenience

Control of pest and diseases in crops Corne Kempenaar / Jos Tielen

- Biologicals on Farm of the Future
 - Serenade experiment (*Bacillus amyloliquefaciens*) in potato
- Sustainability evaluation
 - Environmental Impact Reduction CP and Milieu Indicator Gewasbescherming interactions \rightarrow CPI's \rightarrow Session 3 - #3
- Digital farming on Farm of the Future.
 - FieldView Akkerweb connection (FV movie) https://www.youtube.com/watch?v=vDlp1PbdjtY)
 - HortiView voor EU

Interested?? Go to:

Session 3 - #3 and/or Session 1 - #1

Weed control & Disease detection Seed potatoes

Disease control: Jan Kamp

 Develop a robust prototype for smart disease detection (viruses, Erwinia) that is able to detect these diseases

Weed control: Bram Veldhuisen

- integrated weed control system
 - volunteer potato control
 - combining mechanical weed control and onions/weed detection

Interested?? Go to: Session 1 - #3 Meidoornzaal

Innovative sensor technology for arable farming – One Planet

- One planet / IMEC sensor
 - Optical sensor technology for nitrate detection (handheld, NO3 in solution)
- Decision to stop this development

Future infrastructure – Energy & Data

Energy: how to become self sufficient? Jan Kamp

- Analysis of several scenario's: 100ha farm + storage on farm
 - Current energy use (based fossil fuels)
 - Energy use in future mixed cropping system Fossil free
 - Battery powered
 - Hydrogen powered

Interested?? Go to: Session 2 - #1 Energy & Grid solutions → Meidoornzaal

Data:

Corne Kempenaar / Johan Booij

What is needed due to developments in and around the farm?

- in-depth analysis of current data infrastructure Interested??
- Go to: Session 1 #3 Farmers ■ connection with EU data act / Data infrastructi Data Space → Lijsterbeszaal

Public private partnership - partners

Questions

34