Publications

Spatially Distributed Leaching Modelling of Pesticides in the context of Regulation (EC) 1107/2009. Problem definition document

Tiktak, Aaldrik; Poot, Anton; Jene, B.; Ghafoor, A.; van den Berg, Erik; Hoogeweg, Gerco; Klein, Michael; Stemmer, Michael; Sur, Robin; Sweeney, P.

Summary

Spatially distributed leaching modelling (SDLM) of pesticides is a methodology to estimate the leaching potential of plant protection products over an extensive spatial scale such as national or European. It is described as a higher tier in the current European Guidance for groundwater risk assessment. Whereas this option is an integral part of the tiered assessment scheme only little guidance is provided on how to conduct such spatial assessments with SDLM. Guidance on how to perform such leaching assessments is therefore needed, as well as version control for high-resolution spatial databases for the EU. It was therefore decided to establish a working group under the umbrella of the SETAC Environmental Monitoring Advisory Group on Pesticides (SETAC EMAG-PEST). This document describes the aim and scope of the work to be performed by this working group.
The main products of the working group will be a harmonised modelling framework including the data needed to run these models, and documents describing the use of the framework in regulatory assessments. The framework will serve two different Tiers of the groundwater risk assessment scheme, i.e. Tier-3b and Tier-4. At Tier-3b, the framework will deliver the same exposure assessment goal as currently used in FOCUS groundwater, i.e. the 80th-spatial and temporal percentiles of the leaching concentration at 1-m depth. This exposure assessment goal is considered a conservative estimate of the real groundwater concentration. To ensure consistency of the tiered approach, the modelling framework will support all parameter refinements carried out at Tier-2. At Tier-4, the measured groundwater concentration in groundwater wells is assessed. The modelling framework plays a crucial role for the selection of vulnerable regions in which to install monitoring wells. It can also be used to demonstrate whether existing groundwater monitoring studies have been carried out at locations that are sufficiently vulnerable in view of the existing FOCUS exposure assessment goal. The modelling framework will, however, not simulate the actual concentration in the groundwater wells, because additional processes occur between 1-m depth and the position of the groundwater wells.
The Working Group will consist of member from academia, regulators and industry. It will consist of a Steering Committee, a subgroup on spatial data and a subgroup on modelling. The Working Group will deliver two years after the start of the project.