Publications

The elusive role of soil quality in nutrient cycling: a review

Schroder, Jaap; Schulte, R.P.O.; Creamer, R.E.; Delgado, A.; Van Leeuwen, J.; Lehtinen, T.; Rutgers, M.; Spiegel, H.; Staes, J.; Tóth, G.; Wall, D.P.

Summary

Cycling of nutrients, including nitrogen and phosphorus, is one of the ecosystem services we expect agricultural soils to deliver. Nutrient cycling incorporates the reuse of agricultural, industrial and municipal organic residues that, misleadingly, are often referred to as ‘wastes’. The present review disentangles the processes underlying the cycling of nutrients to better understand which soil properties determine the performance of that function. Four processes are identified (i) the capacity to receive nutrients, (ii) the capacity to make and keep nutrients available to crops, (iii) the capacity to support the uptake of nutrients by crops and (iv) the capacity to support their successful removal in harvested crop. Soil properties matter but it is imperative that, as constituents of ‘soil quality’, they should be evaluated in the context of management options and climate and not as ends in their own right. The effect of a soil property may vary depending on the prevailing climatic and hydrologic conditions and on other soil properties. We recognize that individual soil properties may be enhancing one of the processes underlying the cycling of nutrients but simultaneously weakening others. Competing demands on soil properties are even more obvious when considering other soil functions such as primary production, purification and flow regulation of water, climate modification and habitat provision, as shown by examples. Consequently, evaluations of soil properties and management actions need to be site-specific, taking account of local aspects of their suitability and potential challenges